Today: Online algorithms
- offline vs. online
- self-adjusting lists
- FC, Trans, MTF algorithms
- competitive analysis
- single vs. multiple fingers

Offline algorithm: given entire input up front
before solving the problem - most of this class

Online algorithm: given input one piece at a time
- output/decision must be made before next piece
- goal: online algorithm almost as good as
competitive with optimal offline algorithm
on same input, for any input

Competitive ratio α / α-competitive:
\[\text{online-alg}(x) \leq \alpha \cdot \text{optimal offline alg}(x) \]
for all inputs x

- "regret ratio" compared to hindsight/omniscience
- like approximation algorithm/ratio, but
w.r.t. knowing future instead of NP-hardness
- weak competitiveness: allow $+\beta$ term
Self-adjusting lists:
- Maintain linked list of \(n \) elements
- Online access sequence \(x_1, x_2, \ldots, x_m \)
- Access \((x_i) \) must scan list from front to node storing \(x_i \)
- Can also swap adjacent nodes (visited)

Frequency Counting:
- Count \(\# \) accesses \(f_i(a) \) to item \(a \) (by \(i \)th access)
- Keep list reverse-sorted by \(f_i(a) \)
- If we assume access sequence is chosen stochastically (a chosen indep. with prob. \(p(a) \)) then weakly 1-competitive [Bircher-SICOMP 1979]
- If we compare to optimal offline static list (i.e. reverse sorted by \(f_m(a) \)) then 2-competitive [Bentley & McGeach - CACM 1985]
- But not \(o(n) \)-competitive [Sleator & Tarjan - CACM 1985]

- Access (1) \(n \) times (position 1)
- Access (2) \(n \) times (position 2)

\[\Rightarrow \text{cost} \sum_{i=1}^{n} n \cdot i = \Theta(n^3) \]
- OPT moves current item to front

\[\Rightarrow \text{cost} \sum_{i=1}^{n} (i + n) = \Theta(n^2) \]

\[\Rightarrow \text{ratio} = \Theta(n) \]
Transpose: move x_i one position toward front
- stochastically, beats MTF \[\text{[Rivest - CACM 1976]}\]
- not $o(n)$-competitive even against static list \[\text{[Bentley & McGeoch - CACM 1985]}\]
- always access last item
 \Rightarrow toggle last two items
 \Rightarrow cost $\Theta(m \cdot n)$
- static OPT puts those items first
 \Rightarrow cost $\Theta(m)$
 \Rightarrow ratio $\Theta(n)$

Move To Front (MTF): move x_i all the way front
- stochastically, \(\frac{1}{2}\)-competitive \[\text{[Chung, Hajela - SIGMOD 1981]}\] \[\text{[Seymour - JCSS 1988]}\]
- tight \[\text{[Gonnet, Munro, Suwanda - SIGCOMP 1981]}\]
- 2-competitive against static OPT \[\text{[Bentley & McGeoch - CACM 1985]}\]
- $O(1)$-competitive \[\text{[Sleator & Tarjan - CACM 1985]}\]
MTF is 4-competitive: [Sleator & Tarjan - CACM 1985]

- run MTF & OPT on same sequence, in parallel, starting from same initial list order
- potential function Φ
 \[= 2 \cdot \text{# inversions between MTF & OPT lists} \]
 \[\text{pairs (a, b) where } (a_{\text{MTF}} b) \neq (a_{\text{OPT}} b) \]
- access(x_i) in MTF:

\[
\begin{array}{cccccccc}
< & < & > & > & > & > & x_i & \overset{\text{MTF}}{=} \\
\end{array}
\]
- label nodes in front of x_i in MTF list as $<$ (same) or $>$ (inverted) x_i in OPT list
- $\Delta \Phi$ from MTF(x) = $2(\#<'s - \#>')$
- actual MTF cost = $2(\#<'s + \#>') + 1$
- OPT access cost $\geq \#<'s + 1$
 \[\Rightarrow \text{amortized MTF cost} = 4 \cdot \#<'s + 1 \]
 \[< 4 \cdot \text{OPT access cost} \]

- OPT may also do swaps
 - each may increase Φ by 2 (inversion)
 \[\Rightarrow \text{may increase amortized MTF cost by 2} \]
 - but OPT cost increases by 1
 \[\Rightarrow \text{still MTF} \leq 4 \cdot \text{OPT} \]
Best known:

- MTF is 2-competitive if moving x_i toward front is considered free \[\text{[Sleator & Tarjan - CACM 1985]} \]
- no deterministic algorithm is <2-competitive \[\text{[Karp & Raghavan]} \]
- Bit algorithm is 1.75-competitive in expectation (against oblivious adversary) \[\text{[Reingold, Westbrook, Sleator - Algorithmica 1994]} \]
 - assign random bit to each element, once at beginning
 - upon access, flip bit, and MTF if 1.
- best algorithm is 1.6-competitive in expectation \[\text{[Albers, von Stengel, Werchner - IPL 1995]} \]
- no algorithm is <1.5-competitive

OPEN: close gap for randomized

- offline OPT is NP-hard \[\text{[Ambuehl - ESA 2000]} \]

OPEN: approximability?
Order By Next Request (OBNR): [Munro-ESA 2000]

- offline (omniscient) access algorithm
- access(x_i) finds x_i, say at position k
 - continue scan to next power of 2: 2^[lg k]
 - sort these nodes by next request time
 with x_i at front (say)
- INVARIANT: elements 2^b+1, 2^b+2, ..., 2^{b+1}-1 sorted
 \Rightarrow sorting = merging blocks of sizes 2^0, 2^1, ..., 2^[lg k]
- merge smaller into larger \Rightarrow O(k) time
- KEY: need 2 fingers + long-dist swap

Example:

<table>
<thead>
<tr>
<th>x_i</th>
<th>cost</th>
<th>list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 2 3 4 5 6 7 8 ...</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2 1 3 4 5 6 7 8 ...</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3 4 1 2 5 6 7 8 ...</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4 3 1 2 5 6 7 8 ...</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>5 6 7 8 1 2 3 4 ...</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6 5 7 8 1 2 3 4 ...</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7 8 5 6 1 2 3 4 ...</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>8 7 5 6 1 2 3 4 9 ...</td>
</tr>
</tbody>
</table>

... etc.

Total cost per permutation \sim n \cdot (\frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + ...) = n \cdot \lg n

MTF costs \sim n^{3/2} \Rightarrow ratio \sim \frac{n}{\lg n}

Ditto for any online algorithm on some permutation
OBUR analysis: amortized cost \(c(x_i) \leq 4 \lceil \lg w(x) \rceil + 1 \)

where \(w(x) = \# \) distinct \(y \)'s accessed since last access(\(x \)) including \(x \) itself — **working-set bound**

Proof: charge cost \(c = 2^{\lceil \lg k \rceil} \) of access(\(x_i \)) to elements in penultimate block, of size \((c+1)/4 \)

(special case: \(i=1 \) \(\Rightarrow \) just pay cost of 1)

- if element \(x \) in block \(b \) gets charged
 - then either \(x \) advances to block \(b+1 \)
 - or it is followed by \(2^{b+1} \) elements
 \(\Rightarrow \) not charged in block \(b \) before next access(\(x \))

\(\Rightarrow x \) charged at most once in each block
- \(x \) advances to block \(\lceil \lg w(x) \rceil \) before access(\(x \))
\(\Rightarrow \) amortized cost \(4 \lceil \lg w(x) \rceil \).

- improve 4 to 2.6641... by changing 2 \(\rightarrow 4.24429... \) [Munro]
- lower bound of \(\Omega(\lg w(x) + 1) \) [Demaine & Harmon 2006]

OPEN: nail/improve constant