Insertions-only streams

Piotr Indyk
MIT
The “great streaming divide”

- Insertions and deletions
 - Linear mappings
 - Randomized algorithms (typically)
 - Covered so far
- Insertions-only
 - Divide and conquer, etc.
 - Deterministic algorithms (typically)
 - Will cover in the next few lectures
Today

• L1 heavy hitters’ using $O(1/\varphi)$ words of space
 – Compare to $O(1/\varphi \log m)$ if deletions allowed

n is the length of the stream
Heavy Hitters

• Define (today)

\[\text{HH}_\varphi(x) = \{ i: |x_i| > \varphi \ |x|_1 = \varphi n \} \]

• Heavy Hitters’ Problem:
 – Parameter: \(\varphi \)
 – Goal: return a set \(S \) of coordinates s.t.
 • \(S \) contains \(\text{HH}_\varphi(x) \)
 • \(S \) has size \(O(1/\varphi) \)

• The basic idea by [Misra-Gries’82]
 – Presentation from [Demaine-Munro-OrtizLopez’02]
Warmup: $\varphi = \frac{1}{2}$

- If there exists a “majority” element, we want to find it.

- One-counter algorithm:
 - Set $c=0$
 - For each stream element a
 - If $c=0$ then $e=a$
 - If $e=a$ then $c=c+1$ else $c=c-1$
 - Report e
Correctness

• Assume majority element (MAJ) exists
• Algorithm recap:
 – Set $c=0$
 – For each stream element a
 • (invariant)
 • If $c=0$ then $e=a$
 • If $e=a$ then $c=c+1$ else $c=c-1$
 – Report e
• Invariant: if $c=0$ then MAJ is the majority element in the remainder of the stream (including a)
 – Between the times when $c=0$, the stream contains exactly 50% of e’s
General $\varphi = 1/(L+1)$

- Algorithm:
 - Set $S = \emptyset$; $c: S \rightarrow \{1 \ldots n\}$
 - For each stream element a
 - If $a \notin S$ and $|S| < L$ then add a to S and set $c(a) = 0$
 - If $a \in S$ then $c(a) = c(a) + 1$ else $c(a') = c(a') - 1$ for all $a' \in S$
 - For all $a' \in S$, if $c(a') = 0$ then remove a' from S
 - Report S

- Main proof idea: each time we decrement all counters in S (the “decrement event”) can be charged to $L+1$ unique stream elements
Correctness

• Iteration:
 – If \(a \notin S \) and \(|S| < L\) then add \(a \) to \(S \) and set \(c(a) = 0 \)
 – If \(a \in S \) then \(c(a) = c(a) + 1 \) else \(c(a') = c(a') - 1 \) for all \(a' \in S \)
 – For all \(a' \in S \), if \(c(a') = 0 \) then remove \(a' \) from \(S \)

• Proof:
 – Consider any element \(a \) which occurs \(> n/(L+1) \) times
 – Denote:
 • \(t_f \) = number of decrement events while reading \(a \notin S \)
 • \(t_d \) = number of decrement events while \(a \in S \)
 • \(t_i \) = number of increments while reading \(a \in S \)
 • \(t = t_f + t_i \) = total number of occurrences of \(a \)
 – By the previous slide observation, we have \((L+1)(t_f + t_d) \leq n \)
 – If the final count of \(a \) is zero, then \(t_d = t_i \), and therefore
 \[\frac{n}{L+1} < t = t_f + t_i = t_f + t_d \leq \frac{n}{L+1} \]
 which is a contradiction
Stronger guarantees

- One can show that
 \[|c(a) - x_a| \leq n/(L+1) \]
- In fact, even stronger guarantees