Lecture 13: Sublinear Time Algorithms

- Models
 - Classical Approximation
 - diameter of a point set
 (see slides)
 - Property Testing: approximation for decision problems
 - "sortedness" of a list
 - connectedness of a graph
 - More classical approximation
 - minimum spanning tree
Testing "sortedness" of a list

def: list of size \(n \) is \(\varepsilon \)-close to sorted if can delete \(\leq \varepsilon n \) elements to get a sorted list

Requirements of property testing algorithm:

Input \(\varepsilon \), list \(y_1 \ldots y_n \)

Output

- if \(y_1 \leq y_2 \leq \ldots \leq y_n \) output "Pass"
- if \(y_1 \ldots y_n \) not \(\varepsilon \)-close to sorted output "FAIL" with prob \(\geq 3/4 \)

\[\text{Note: } p > q \quad \text{is equivalent to } 7q \geq 7p \]
so this is the same as
"If likely to output Pass (with prob \(> 1/3 \)) on this list then list must be \(\varepsilon \)-close to sorted."

Comment: we didn't specify what should happen if \(y_i \)'s not sorted, but not far, either output is reasonable but this leeway allows major speedup!
• Two tests that don't work well:
 1) Pick random \(i \) and test whether \(y_i < y_{i+1} \)
 2) Pick random \(i \neq j \) and test whether \(y_i < y_j \)

Why not?

• Wlog, assume list distinct (i.e., \(x_1 < x_2 < x_3 \) ...)
 (if not, append index to each element)
 \(x_1 \ldots x_n \Rightarrow (x_1, 1), (x_2, 2) \ldots (x_n, n) \)
 breaks ties without changing order

• The test:

 Do \(O(\sqrt{\epsilon}) \) times:
 Pick random \(i \)
 Look at \(y_i \)'s value
 Do binary search on list of \(y_i \)'s for this value
 If don't end up at location \(i \)
 or find an inconsistency along search path, output "FAIL" and halt
 (If no problems found) Output "PASS"

• Runtime \(O(\frac{1}{\epsilon} \log n) \)
Behavior

index "good" if binary search for y_i is successful.

\[\begin{align*}
e.g., & \quad 1 \quad 4 \quad 2 \quad 5 \quad 7 \quad 1 \quad 14 \quad 19 \\
& \text{bin search for } 7-19 \text{ won't find any inconsistency} \Rightarrow 5-8 \text{ are good} \\
& \text{bin search for index } 1: \text{ (value 1)} \\
& \quad \quad 1 \leftarrow 4 \leftarrow 5 \quad \text{ok} \Rightarrow \text{index } 1 \text{ is good} \\
& \quad \text{bin search for index } 3: \text{ (value 2)} \\
& \quad \quad 1 \leftarrow 4 \leftarrow 5 \quad 2 \text{ not found} \Rightarrow \text{index } 3 \text{ is not good} \\
& \quad \text{bin search for index } 2: \text{ (value 4)} \\
& \quad \quad 4 \leftarrow 5 \quad 2 \text{ found} \Rightarrow \text{index } 2 \text{ is good} \\
& \quad \text{bin search for index } 4: \text{ (value 5)} \\
& \quad \quad 5 \text{ found} \Rightarrow \text{index } 4 \text{ good}
\end{align*} \]
Behavior (cont.)

- if list sorted,
 all is good \Rightarrow list always passes \uparrow
 uses distinctness

- if list not ε-close,
 to show: test fails with prob $\geq 3/4$

 Equivalently will show:
 If list passes test with prob $> 1/4$ then
 must be ε-close.

why?
If list passes test with prob $> 1/4$
then $\geq (1-\varepsilon)n$ i's are good
(if $> \varepsilon n$ i's are bad,
then in ε/n loops will
choose one with prob $\geq 1 - (1 - \varepsilon)^{\varepsilon/n}$
$\geq 1 - e^{-\varepsilon}$
$\geq 3/4$

which contradicts that test passes with prob $> 1/4$
Behavior (cont. again)

Note good elements are in the right order!

Claim if $i < j$ are both good then $y_i < y_j$

Why? let k be least common ancestor of i, j

search for i went "left" $\Rightarrow y_i < y_k$

j "right" $\Rightarrow y_k < y_j$

so $y_i < y_j$!

So, delete any bad elements

gives sorted list.
Testing "connectedness" of a graph

Given: graph G in vertices, m edges
max degree d
adjacency list representation

def G is ε-close to connected
if adding $\leq \varepsilon dn$ edges transforms it to
connected (today it is ok if transformation
violates max degree d requirement)

Property tester requirements:

Input: ε, G

Output:
- if G connected, output "Pass"
- if G not ε-close, output "FAIL" with
 prob $\geq 3/4$

Idea for tester

If G far from connected,
\Rightarrow must have many $(\geq \varepsilon n)$ connected components
\Rightarrow many small connected components
\Rightarrow many nodes in small connected components
Algorithm

Do $O(\frac{1}{\epsilon^2 d})$ times:

Pick random node s, run BFS from s until

(a) $\frac{2}{\sqrt{d}}$ distinct nodes seen ≤ good case, continue

or

(b) see that s is in component of size $\leq \frac{2}{\sqrt{d}}$ nodes

↑ bad case, output "FAIL" and halt

(If never entered (b)) Output "PASS"

Runtime

$O(\frac{1}{\epsilon^2 d})$ loops

$O(\frac{1}{\epsilon^2})$ steps of BFS × $O(d)$ time per step

$\Rightarrow O(\frac{1}{\epsilon^2 d})$ time

Behavior

Lemmal If G ϵ-far from connected

Then has $\geq \epsilon d n$ connected components

Pf assume $\leq \epsilon d n$ components

↑ add $\leq \epsilon d n$ edges connects up graph can not ϵ-far! $\Rightarrow n$
Lemma 2: if \[\geq \frac{edn}{2} \] components of size \(\leq \frac{2}{ed} \), then \[\geq \frac{edn}{2} \] components of size \(\leq \frac{2}{ed} \).

Proof:

\[L \leftarrow \text{# conn comp} \]
\[L' \leftarrow \text{# conn comp of size } \leq \frac{2}{ed} \]
\[L \leftarrow \text{# conn comp of size } \leq \frac{2}{ed} \]
\[L' \leq 2/ed \]
\[L = L + L' \]

Note: \(L \cdot \frac{2}{ed} \leq n \) (else too many nodes!)

so \(L \leq \frac{edn}{2} \)

so \(L' = L - L \geq \frac{edn}{2} \)

Observation: if \(\geq \frac{edn}{2} \) components of size \(\leq \frac{2}{ed} \)

then \(\geq \left(\frac{ed}{2} \right) \cdot n \) nodes in components of size \(\leq \frac{2}{ed} \)

(since each small component has \(\leq 1 \) node)

Putting it together (Lemma 1, 2 + observation):

If \(G \) \(\varepsilon \)-far from connected,

\[\geq \frac{ed}{2} \] fraction of nodes in small components

\[\text{We reach (6)} + \text{FAIL!} \]

so \[\text{Prob}[\text{fail}] \geq 1 - \left(1 - \frac{ed}{2} \right)^{4/ed} \]

\[\geq 1 - e^{-4/2} = 3/4 \] for \(C \) big enough.