Sublinear time algorithms based on simulating greedy algorithms

Lecture 18
Ronitt Rubinfeld
Sparse Graphs

• Representation:
 – Max degree d
 – Adjacency list format

• Problems of interest:
 – Vertex cover
 – Matching
 – Dominating set
 – Set cover (on sparse set systems)
Maximal Matching

- $M \subseteq E$ is a matching if $8 (u,v), (w,x) \in M$ \{u,v\} \cap \{w,x\} = \$

- M is a maximal matching if adding any edge violates the matching property

- Note:
 - Size of any vertex cover \geq size of any maximal matching
 - Size of vertex cover $\leq 2 \cdot$ size of any maximal matching
Vertex cover vs. maximal matching

• Size of any vertex cover \(\geq \) size of any maximal matching
 – every matching edge must be covered by VC, but endpoints of matching are disjoint!

• Size of vertex cover \(\leq 2 \cdot \) size of any maximal matching
 – let C be all nodes that are matched by maximal matching.
 – If C is not a vertex cover, then there is an edge that could have been added to the matching (contradicting maximality).
Greedy algorithm for maximal matching

• Algorithm:
 – \(M \lessgtr \);
 – \(8 \; e = (u,v) \in E \)
 • If neither of \(u,v \) matched
 – Add \(e \) to \(M \)
 – Output \(M \)

• Why is \(M \) maximal?
 – If \(e \) not in \(M \) then either \(u \) or \(v \) already matched

• How big is \(M \) for graphs with max degree \(d \)?
 – Any edge in \(M \) removes < 2d others from consideration
 – Still have possible edges to add for \(\frac{n}{2d} \) rounds
Suppose you have help....

• Assume there is an oracle:
 – on input \(e \) (an edge) tells you if \(e \) is in the matching

• Why should you have such an oracle?
 – we’ll see later...
Idea for sublinear time algorithm:

- Run [Parnas-Ron] reduction algorithm:
 - i.e.,
 - Sample $O(1/²²)$ nodes
 - For each sampled node, call "oracle" on neighboring edges to decide if it is in the matching
 - Output
 \[
 \left(\frac{\text{fraction of sampled nodes in matching}}{2} \right) \cdot n + \left(\frac{²}{2} \right)n
 \]

- How do you implement oracle?
 - Idea: figure out what greedy would do
Problems with greedy

• Can have long dependency chains!
 – (see board for example)

• How can you implement the oracle?
 – Must know if adjacent edges that come before in the ordering are in the matching
 – Do not need to know anything about edges coming after
Breaking long dependency chains

• Assign random ordering to edges
 – Greedy works under any ordering
 – To show: random order has short dependency chains
Implementing oracle \mathcal{O}

[Nguyen Onak]

- **Preprocessing:**
 - assign random number $r_e \in [0,1]$ to each $e \in E$

- **Oracle implementation:**
 - Input: edge $e \in E$,
 - Output: is e in M?
 - Algorithm:
 - Find all the adjacent edges of e, $e' \in E$, such that $r_{e'} < r_q$
 - Recursively check if any in M
 - If any in the matching, output NO
 - If none are in the matching, output YES
Example Run Θ
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Example Run Θ (cont.)
Example Run \emptyset (cont.)
Example Run Θ (cont.)

[Diagram of network with numbers and question marks]
Example Run \emptyset (cont.)
Example Run Φ (cont.)
Example Run Θ (cont.)
Example Run \emptyset (cont.)
Example Run Θ (cont.)
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Correctness

• This algorithm simulates run of classical greedy algorithm
 – Greedy works under any ordering of edges

• Outputs estimate t such that
 $$\text{MM}(G) \cdot t \cdot \text{MM}(G) + ^2 n$$
 where $\text{MM}(G)$ is size of some maximal matching
Complexity

• Claim: Expected number queries to graph per oracle query is $2^{O(d)}$

 – so total complexity is $2^{O(d)}/2^2$

– Main idea:
 • Bound probability a path of length k explored:
 – Ranks must decrease along the path
 – So probability $\cdot \frac{1}{(k)!}$
Complexity

• Claim: Expected number queries to graph per oracle query is $2^{O(d)}$

• Proof:
 – $\Pr[\text{given path of length } k \text{ explored}] \cdot \frac{1}{(k)!}$
 – Number of neighbors at distance $k \cdot (2d)^k$
 – $E[\text{Number of nbrs explored at dist } k] \cdot \frac{(2d)^k}{(k)!}$
 – $E[\text{number of explored nodes}] \cdot \sum_{k=0}^{1} \frac{(2d)^k}{(k)!} \cdot e^{2d}/2d$
 – $E[\text{query complexity}] = O(d) \cdot e^{2d/2d}$

 = $2^{O(d)}$
Further work

• Always recurse on least ranked edge first gives better runtime [Yoshida Yamamoto Ito]
• More complicated argument for Maximum matching, set cover,…
• Even better results for certain classes of graphs [Hassidim Kelner Nguyen Onak]
 – Minor-free (e.g., planar, constant tree-width, non-expanding graphs…)
 – see board for more on this!!!