Distributed computation vs. sublinear time algorithms

Today: Connection between sublinear time algorithms and local distributed algorithms (local = constant number of communication rounds) on sparse graphs

[Parnas Ron]
Sparse Graphs

- **Representation:**
 - Max degree d
 - Adjacency list format

- **Problems of interest:**
 - Vertex cover
 - Matching
 - Dominating set
 - Set cover (on sparse set systems)
Vertex Cover (VC)

Def. $V' \subseteq V$ is a **vertex cover** if $\forall e=(u,v) \in E$, either $u \in V'$ or $v \in V'$.

Recall: In a degree-d graph: $\text{VC} \leq \frac{m}{d+1}$
Approximation for VC

- Multiplicative?
 - VC of graph with no edges vs. graph with 1 edge

- Additive?
 - Need to allow some multiplicative error: Computationally hard to approximate to better than 1.36 factor (maybe even 2…)

- Combination?
 - Def. y' is (γ, δ)-estimate of y if
 $$y \cdot y' \cdot \gamma y + \delta$$

Good for minimization problems
Distributed Algorithms (simple version)

- Network
 - Processors
 - Links
 - (assume maximum degree is known to all)
- Communication round
 - Each node sends message to each neighbor

- Vertex Cover Problem:
 - Network graph = input graph
 - After k rounds, each node knows if it is in VC
 (no guarantees that any other node knows about you!)
Main insight

in k-local (k-round) algorithm for vertex cover, output of node v can depend only on nodes of distance at most k from v

number of such nodes $\leq d^k$ (ok if d,k constants)

(note: this works even for randomized algorithms if you can reproduce their random bits!)
Connection for Vertex Cover

Thm [Parnas Ron]: t-round distributed algorithm for vertex cover yields $d_{\text{max}}^{O(t)}$ sequential query approximation algorithm for vertex cover.

Reduction idea:
• Sample vertices of graph
• For each sampled vertex v, simulate distributed algorithm to see if v is in VC
• Output $(\text{fraction in VC}) \cdot n$
A “local algorithm” for vertex cover

- **Vertex Cover algorithm**: (max degree d)
 - $i \leftarrow 1$
 - While edges remain:
 - Remove vertices of degree $> d / 2^i$ and adjacent edges
 - Update degrees of remaining nodes
 - Increment i
 - Output *all removed vertices* as VC

- **How many rounds?**
 \[\log d \]
Example run of Parnas-Ron

Remove vertices of degree ≥ 8
Remove vertices of degree ≥ 4
Remove vertices of degree ≤ 1
Why a Vertex Cover?

- Vertex Cover algorithm:
 - $i \leftarrow 1$
 - While edges remain:
 - Remove vertices of degree $> \frac{d_{\text{max}}}{2^i}$ and adjacent edges
 - Update degrees of remaining nodes
 - Increment i
 - Output *all removed vertices* as VC

- No edges remain at end – all removed along with adjacent vertex
Why a good approximation?

Let $\text{VC}_G = \text{size of min vertex cover of } G$

Theorem: $\text{VC}_G \cdot |C| \cdot (2\log d + 1) \text{VC}_G$

Proof:

$\text{VC}_G \cdot |C|:$
- Algorithm removes edges only if at least one endpoint placed in cover
- All edges gone at end
Why a good approximation? (cont.)

Theorem: \(VC_G \cdot |C| \cdot (2\log d + 1) VC_G \)

Need to prove:
\(|C| \cdot (2\log d + 1) VC_G \)
Approximation algorithm for vertex cover

On input G, with max degree d, there is an $O(d^{O\left(\log d\right)} / \varepsilon^2)$ (sequential) time algorithm which outputs $\bar{\mathcal{V}}$ such that

$$VC_G \cdot \bar{\mathcal{V}} \cdot (2\log d + 1) \cdot VC_G + \varepsilon^2 \cdot n$$

- Proof: $O(\log d)$ round distributed algorithm + Parnas-Ron theorem
- No dependence on n
- Can get $O(1)$ multiplicative estimates and faster runtimes in terms of d, ε
Constant time approximation algorithms for sparse graphs

- Paradigm + local algorithms yield \textit{constant time} approximation algorithms for bounded degree graph problems \cite{Parnas Ron} \cite{Kuhn Moscibroda Wattenhofer} \cite{Marko Ron}

 - Applies to vertex cover, maximum matching, dominating set, sparse set cover, sparse positive linear programs, …
Change of context....
Large inputs
Large outputs
When we don’t need to see all the output…

do we need to see all the input?
Local Computation Algorithms

Input x

LCA

Output y

Difficulty: consistency with a single legal answer

$i_1, i_2, \ldots \rightarrow LCA \rightarrow y_{i_1}, y_{i_2}, \ldots$

Output y
A first example:

Maximal Independent Set
Maximal independent set

- Sparse undirected graph $G=(V,E)$, degree at most d (constant)
- Independent set: subset V' of V such that no two vertices connected by an edge
Maximal Independent Set

- Subset I of vertices V of undirected graph $G = (V,E)$ is **independent** if no two neighbors are in I.

- Independent set I is **maximal** if no strict superset of I is independent.
 - But might not be maximum!
Maximal independent set

- Central problem:
 - Important optimization tool: e.g., task scheduling
 - Distributed computing
 - “Can I broadcast without conflicting with neighbors?”
 - Communication in wireless sensor nets
 - Construct backbone in ad-hoc wireless network
 - Drosophila brain development (choice of leader cells)
- …
Maximal independent set

Is node u in the maximal independent set?
A fast (but not space efficient) local computation algorithm

- Lazy Greedy Algorithm: (initially, MIS is empty)
 - Query: “Is node u in the MIS?”
 - Answer: if neighbors of u not in MIS, then put u into it (and remember this decision!)

- Requirements: $O(d)$ time, $O(n)$ space

- Note:
 - Answer depends on query order
 - Must remember past choices
 - Can’t allow parallel copies of algorithm
A new challenge: Consistency

- Many possible MIS solutions –
 - Which one? Must be consistent with past answers!
 - What if questions asked in parallel?
A hope

- Can we find MIS algorithm A for which output for node v depends only on few inputs? Then simulate A’s behavior for v!
 - E.g., [a la Parnas Ron] if there is a k round distributed algorithm for MIS, then:
 - v’s output depends only on inputs and computations of k-ball around v
 - Can read/simulate in d^k time!

- But how big is k?

Big Graph

k neighborhood of v
How fast can MIS be computed?

- Lexicographically-first-MIS is P-complete [Cook]
- Randomized $O(d \log n)$ rounds [Luby]
 - Yields $d^{\mathcal{O}(\log n)} = n^{\mathcal{O}(\log d)}$ time LCA
- $O(d \log d + \log^* n)$ rounds [Barenboim Elkin]
 - Yields $(d^{O((d + \log^* n) \log d)})$ time LCA
 - yields best LCA!
Here – a nonoptimal algorithm, but not bad!

A distributed algorithm for MIS (simplification of [Luby]):

- repeat $O(\log d)$ times in parallel
 - each vertex selects itself with probability $1/2d$
 - if v selects itself and no neighbor selected
 - add v to MIS
 - remove v and $N(v)$ from the graph
Distributed algorithm for MIS
Distributed algorithm for MIS
How many rounds?

Theorem: The number of phases is \(\leq 8d \log n \) with probability at least \(1 - \frac{1}{n} \)

Corollary: \(E[number \ of \ phases] \) is \(O(d \log n) \)
Global behavior?
After running $O(d \log d)$ rounds of Luby’s distributed algorithm ...

Remaining live components are all small!
New “two-phased” plan

On input v:

- Get partial solution which answers most queries and breaks up the graph into small components:
 - Simulate $O(d \log d)$ rounds of Luby’s algorithm from v’s perspective
 - LCA’s simulation runtime: $O(d^d \log d)$

- If v not determined yet, solve the whole surviving component that contains it:
 - If v not yet in “MIS” or neighbor of “MIS” then:
 - Let C_v be the “still live” component of vertices containing v
 - Solve MIS in C_v to determine if v is in MIS
 - LCA’s Runtime: $O(\text{size of } C_v \cdot d^d \log d)$
Two remaining details:

- How big is \(v \)'s component?
- How do we simulate the random bits consistently?
How big is v’s component?

- Claim: whp, after phase 1, for all v, size of C_v is $O(poly(d) \cdot \log n)$

- Why?
 - What you want to say (but can’t):
 - the probability that any node survives is small, say p
 - assume for a minute (this is far from true) that the survival of a node is independent of the survival of all other nodes.
 - consider any connected component of size k, then the probability it survives is at most p^k
 - so the probability that a connected component of size k survives is at most (number of connected components of size k) * p^k
How big is v’s component?

- Claim: whp, after phase 1, for all v, size of C_v is $O(poly(d) \cdot \log n)$

- Why?
 - What you want to say (but can’t):
 - the probability that any node survives is small, say p
 - assume for a minute (this is far from true) that the survival of a node is independent of the survival of all other nodes.
 - consider any connected component of size k, then the probability it survives is at most p^k
 - so the probability that a connected component of size k survives is at most (number of connected components of size k) $\times p^k$

- Problem: in a general graph, too many connected components, and the survival probabilities not independent.

 - Take advantage of the fact that this is degree d bounded
 - show that in any large connected component, there are many nodes whose survival in any round is independent
 - (i.e. those that are at least distance 3)
How big is \(v\)'s component?

- **Claim:** w.h.p., after phase 1, for all \(v\), size of \(C_v\) is \(O(\text{poly}(d) \cdot \log n)\)

- **Why?**
 - (As in Beck’s analysis for algorithmic Lovasz Local Lemma)
 - Any large surviving component must have a large tree as a subgraph
 - Degree bound implies that any large tree has a large subset of nodes that are at least distance 3 from each other
 - hence their presence/nonpresence in MIS is independent (requires slight modification of algorithm)
 - The probability that any such subset survives is at most \((\text{number of trees of size } k) \cdot (\text{probability that } k \text{ independent nodes survive})\)
How do we simulate random bits?

- Naïve implementation:
 - Write down all $O(dn \log n \log d)$ random bits?

- Fewer random bits:
 - $O(\text{polylog } n)$-independent bits suffice
 - Write down polylog n size seed
Put everything together...

Theorem: For any degree d bounded graph, there is an $O(d \log n)$ space, $O(d^{O(d \log d)} \log^2 n)$ time local computation algorithm for MIS.

Recent improvement: $O(d^{O(d \log d)} \log n)$ time

[Mansour Rubinstein Vardi Xie]
Local Computation Algorithms: A model
Local Computation Algorithms (LCAs)

- **F**: a computation problem
 - input \(x (|x| = n) \)
 - set of legal solutions \(F(x) = \{y_1, y_2, \ldots, y_s\} \)

- **LCA** implements oracle access to some \(y_k \)
 - For any sequence of queries \(i_1, i_2, \ldots, i_q \), LCA replies with \((y_k)_{i_1} (y_k)_{i_2} \ldots (y_k)_{i_q} \) with
 - at most \(t(n) \) time per query
 - at most \(s(n) \) space per query
 - correct for all queries with probability \(1 - \delta(n) \)
Local computation algorithms

Input: x (RAM)

LCA

random string

work space

y_1

y_2

$y_k(i_2)$

$y_k(i_q)$

$y_{k(i_1)}$

$y_{k(i_q)}$
Wish list for LCAs

- Fast: $t(n)$ at most polylog
- Space efficient: $s(n)$ at most polylog
- Parallel queries ok
- Query order oblivious

Cloud computation: can coordinate without too much communication
One takeaway message

- Kill several birds with one stone:
 - Space, parallelism, history independence and consistency are related!
Open questions

- Better techniques?
 - dependency on d is exponential: is polynomial possible? (some hope: [Yoshida, Yamamoto, Ito, Onak, Ron, Rosen, Rubinfeld])
 - Hypergraph coloring with LLL parameters? (e.g. based on [Moser, Tardos]?)

- Other problems?
 - Resource management (when is my tennis court time?), managing coalitions, MSTs, spanners, string matching

- Dynamic LCAs?