6.006- Introduction to Algorithms

Lecture 4
Menu

• Priority Queues
• Heaps
• Heapsort
Priority Queue

A data structure implementing a set S of elements, each associated with a key, supporting the following operations:

- $\text{insert}(S, x)$: insert element x into set S
- $\text{max}(S)$: return element of S with largest key
- $\text{extract_max}(S)$: return element of S with largest key and remove it from S
- $\text{increase_key}(S, x, k)$: increase the value of element x’s key to new value k

(assumed to be as large as current value)
Heap

• Implementation of a priority queue
• An array, visualized as a nearly complete binary tree
• **Max Heap Property**: The key of a node is \geq than the keys of its children
 (Min Heap defined analogously)
Heap as a Tree

root of tree: first element in the array, corresponding to $i = 1$

parent$(i) = i/2$: returns index of node's parent

left$(i) = 2i$: returns index of node's left child

right$(i) = 2i + 1$: returns index of node's right child

No pointers required! Height of a binary heap is $O(\lg n)$
Heap Operations

build_max_heap : produce a max-heap from an unordered array

max_heapify : correct a single violation of the heap property in a subtree at its root

insert, extract_max, heapsort
Max_heapify

• Assume that the trees rooted at left(i) and right(i) are max-heaps

• If element $A[i]$ violates the max-heap property, correct violation by “trickling” element $A[i]$ down the tree, making the subtree rooted at index i a max-heap
Max_heapify (Example)

Node 10 is the left child of node 5 but is drawn to the right for convenience.

MAX_HEAPIFY (A, 2)
heap_size[A] = 10
Max_heapify (Example)

Call MAX_HEAPIFY(A,4)
because max_heap property
is violated
Max_heapify (Example)

Time=? \(O(\log n)\)

No more calls
Max_Heapify Pseudocode

\[\text{l = left}(i) \]
\[\text{r = right}(i) \]
\[\text{if} \ (l \leq \text{heap-size}(A) \text{ and } A[l] > A[i]) \]
\[\text{then largest} = l \text{ else largest} = i \]
\[\text{if} \ (r \leq \text{heap-size}(A) \text{ and } A[r] > A[\text{largest}]) \]
\[\text{then largest} = r \]
\[\text{if largest} \neq i \]
\[\text{then exchange } A[i] \text{ and } A[\text{largest}] \]
\[\text{Max_Heapify}(A, \text{largest}) \]
Build_Max_Heap(A)

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Why start at n/2?

Because elements A[n/2 + 1 … n] are all leaves of the tree
2i > n, for i > n/2 + 1

Time=？ O(n log n) via simple analysis
Build_Max_Heap(A) Analysis

Converts $A[1\ldots n]$ to a max heap

\[
\text{Build_Max_Heap}(A): \\
\quad \text{for } i = n/2 \text{ downto } 1 \\
\quad \quad \text{do } \text{Max_Heapify}(A, i)
\]

Observe however that Max_Heapify takes $O(1)$ for time for nodes that are one level above the leaves, and in general, $O(l)$ for the nodes that are l levels above the leaves. We have $n/4$ nodes with level 1, $n/8$ with level 2, and so on till we have one root node that is $\log n$ levels above the leaves.
Build_Max_Heap(A) Analysis

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Total amount of work in the for loop can be summed as:
 n/4 (1 c) + n/8 (2 c) + n/16 (3 c) + … + 1 (lg n c)

Setting n/4 = 2^k and simplifying we get:
 c 2^k(1/2^0 + 2/2^1 + 3/2^2 + … (k+1)/2^k)

The term is brackets is bounded by a constant!

This means that Build_Max_Heap is O(n)
Build-Max-Heap Demo

MAX-HEAPIFY (A,5)
no change
MAX-HEAPIFY (A,4)

MAX-HEAPIFY (A,3)
Build-Max-Heap Demo

MAX-HEAPIFY (A, 2)

MAX-HEAPIFY (A, 1)
Build-Max-Heap

A 4 1 3 2 16 9 10 14 8 7
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
 now max element is at the end of the array!
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
2. Find maximum element A[1];
3. Swap elements A[n] and A[1]: now max element is at the end of the array!
4. Discard node n from heap (by decrementing heap-size variable)
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
 children are max heaps. Run max_heapify to fix this.
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.

6. Go to Step 2 unless heap is empty.
Heap-Sort Demo

Max_heapify(A,1)
Heap-Sort Demo

Heap-Sort Demo
Heap-Sort Demo

Heap-Sort

Running time:

after n iterations the Heap is empty
every iteration involves a swap and a max_heapify
operation; hence it takes $O(\log n)$ time

Overall $O(n \log n)$