Lecture 8: Hashing I

Lecture Overview

- Dictionaries and Python
- Motivation
- Prehashing
- Hashing
- Chaining
- Simple uniform hashing

Dictionary Problem

Abstract Data Type (ADT) — maintain a set of items, each with a key, subject to

- insert(item): add item to set
- delete(item): remove item from set
- search(key): return item with key if it exists

We assume items have distinct keys (or that inserting new one clobbers old).
Balanced BSTs solve in $O(\lg n)$ time per op. (in addition to inexact searches like next-largest).
Goal: $O(1)$ time per operation.
We saw in the last lecture a lower-bound of $\Omega(\lg n)$ for searching and $\Omega(n \lg n)$ for sorting in the comparison model. We also saw that by moving out of the comparison model and using the fact that items are (bounded-size) integers, we can sort faster, in linear time. In this and the next two lectures, we will see how hashing lets us do $O(1)$ search, overcoming the $\Omega(\lg n)$ lower bound.
A caveat: The time for search is $O(1)$ not in the worst-case, but is an average-case, high probability statement.
Python Dictionaries:

Items are (key, value) pairs e.g. \(d = \{\text{‘algorithms’: 5, ‘cool’: 42}\} \)

- \(d\text{.items()} \rightarrow [(\text{‘algorithms’, 5}), (\text{‘cool’, 5})] \)
- \(d[\text{‘cool’}] \rightarrow 42 \)
- \(d[42] \rightarrow \text{KeyError} \)
- \(\text{‘cool’ in d} \rightarrow \text{True} \)
- \(42 \text{ in d} \rightarrow \text{False} \)

Python set is really dict where items are keys (no values)

Motivation

Dictionaries are perhaps the most popular data structure in CS

- built into most modern programming languages (Python, Perl, Ruby, JavaScript, Java, C++, C#, ...)
- e.g. best docdist code: word counts & inner product
- implement databases: (DB_HASH in Berkeley DB)
 - English word \(\rightarrow \) definition (literal dict.)
 - English words: for spelling correction
 - word \(\rightarrow \) all webpages containing that word
 - username \(\rightarrow \) account object
- compilers & interpreters: names \(\rightarrow \) variables
- network routers: IP address \(\rightarrow \) wire
- network server: port number \(\rightarrow \) socket/app.
- virtual memory: virtual address \(\rightarrow \) physical

Less obvious, using hashing techniques:

- substring search (grep, Google) [L9]
- file or directory synchronization (rsync)
- cryptography: file transfer & identification [L10]
How do we solve the dictionary problem?

Simple Approach: Direct Access Table

This means items would need to be stored in an array, indexed by key (random access)

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)

2. large key range \(\Rightarrow \) large space — e.g. one key of \(2^{256} \) is bad news.

2 Solutions:

Solution to 1: “prehash” keys to integers.

- In theory, possible because keys are finite \(\Rightarrow \) set of keys is countable

- In Python: `hash(object)` (actually hash is misnomer should be “prehash”) where object is a number, string, tuple, etc. or object implementing `_hash_` (default = `id` = memory address)

Solution to 2: hashing (verb from French ‘hache’ = hatchet, & Old High German ‘happja’ = scythe)

- Reduce universe \(\mathcal{U} \) of all keys (say, integers) down to reasonable size \(m \) for table

- idea: \(m \approx n = \# \) keys stored in dictionary
• hash function \(h: \mathcal{U} \rightarrow \{0, 1, \ldots, m - 1\} \)

• two keys \(k_i, k_j \in K \) collide if \(h(k_i) = h(k_j) \)

How do we deal with collisions?

We will see two ways

1. Chaining: TODAY

2. Open addressing: L10

Chaining

Linked list of colliding elements in each slot of table

• Search must go through *whole* list \(T[h(key)] \)

• Worst case: all \(n \) keys hash to same slot \(\implies \Theta(n) \) per operation
Simple Uniform Hashing:

An assumption (cheating): Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.

\[
\begin{align*}
\text{let } n &= \text{ # keys stored in table} \\
m &= \text{ # slots in table} \\
\text{load factor } \alpha &= n/m = \text{ expected # keys per slot = expected length of a chain}
\end{align*}
\]

Performance

This implies that expected running time for search is $\Theta(1 + \alpha)$ — the 1 comes from applying the hash function and random access to the slot whereas the α comes from searching the list. This is equal to $O(1)$ if $\alpha = O(1)$, i.e., $m = \Omega(n)$.

We will see three examples of hash functions, two in the recitations and one in [L9].