Lecture 1: Introduction and Peak Finding

Lecture Overview

- Administrivia
- Course Overview
- “Peak finding” problem — 1D and 2D versions

Course Overview

This course covers:

- Efficient procedures for solving problems on large inputs (Ex: U.S. Highway Map, Human Genome)
- Scalability
- Classic data structures and elementary algorithms (CLRS text)
- Real implementations in Python
- Fun problem sets!

The course is divided into 8 modules — each of which has a motivating problem and problem set(s) (except for the last module). Tentative module topics and motivating problems are as described below:

1. Algorithmic Thinking: Peak Finding
2. Sorting & Trees: Computing Baseball Statistics
3. Hashing: Genome Comparison
4. Numerics: RSA Encryption
5. Graphs: Rubik’s Cube
6. Shortest Paths: Caltech → MIT
7. Dynamic Programming: Image Compression
8. Advanced Topics
Peak Finder

One-dimensional Version

Position 2 is a peak if and only if $b \geq a$ and $b \geq c$. Position 9 is a peak if $i \geq h$.

![Figure 1: a-i are numbers](image)

Problem: Find a peak if it exists (Does it always exist?)

Straightforward Algorithm

![Figure 2: Look at $n/2$ elements on average, could look at n elements in the worst case](image)

What if we start in the middle? For the configuration below, we would look at $n/2$ elements. Would we have to ever look at more than $n/2$ elements if we start in the middle, and choose a direction based on which neighboring element is larger than the middle element?
Can we do better?

![Diagram of an array with elements labeled 1 to n, with an arrow pointing to element n/2 to indicate looking at the n/2 position.]

Figure 3: Divide & Conquer

- If $a[n/2] < a[n/2 - 1]$ then only look at left half $1 \ldots n/2 - 1$ to look for peak
- Else if $a[n/2] < a[n/2 + 1]$ then only look at right half $n/2 + 1 \ldots n$ to look for peak
- Else $n/2$ position is a peak: WHY?

$$a[n/2] \geq a[n/2 - 1]$$
$$a[n/2] \geq a[n/2 + 1]$$

What is the complexity?

$$T(n) = T(n/2) + \Theta(1) = \Theta(1) + \ldots + \Theta(1) \text{ (log}_2(n) \text{ times}) = \Theta(\log_2(n))$$

In order to sum up the $\Theta(i)$’s as we do here, we need to find a constant that works for all.
If $n = 1000000$, $\Theta(n)$ algo needs 13 sec in python. If algo is $\Theta(\log n)$ we only need 0.001 sec.

Argue that the algorithm is correct. Correctness has two parts: 1) the algorithm terminates and 2) produces a peak.

Two-dimensional Version

a is a 2D-peak iff $a \geq b, a \geq d, a \geq c, a \geq e$

Attempt # 1: Extend 1D Divide and Conquer to 2D

- Pick middle column $j = m/2$.
- Find a 1D-peak at i, j.
- Use (i, j) as a start point on row i to find 1D-peak on row i.
Figure 4: Greedy Ascent Algorithm: $\Theta(nm)$ complexity, $\Theta(n^2)$ algorithm if $m = n$

Attempt #1 fails

Problem: 2D-peak may not exist on row i

End up with 14 which is not a 2D-peak.
Attempt # 2

- Pick middle column $j = m/2$
- Find global maximum on column j at (i, j)
- Compare $(i, j - 1), (i, j), (i, j + 1)$
- Pick left columns of $(i, j - 1) > (i, j)$
- Similarly for right
- (i, j) is a 2D-peak if neither condition holds ← WHY?
- Solve the new problem with half the number of columns.
- When you have a single column, find global maximum and you’re done.

Example of Attempt #2

Question: What if we replaced global maximum with 1D-peak in Attempt #2? Would that work?
Proof of Correctness

There are two aspects to correctness: 1) the algorithm always terminates (termination), and 2) the algorithm always produces a peak (safety). Termination is easy: the problem size shrinks on every iteration. Proving safety is more involved: You will do this in Problem Set 1 using induction.

Complexity of Attempt #2

If $T(n, m)$ denotes work required to solve problem with n rows and m columns

\[
T(n, m) = T(n, m/2) + \Theta(n) \quad \text{(to find global maximum on a column — (n rows))}
\]

\[
T(n, m) = \Theta(n) + \ldots + \Theta(n)
\]

\[
= \Theta(n \log m) = \Theta(n \log n) \quad \text{if } m = n
\]