Lecture 2: Models of Computation

Lecture Overview

- What is an algorithm?
- Random access machine
- Pointer machine
- Python model
- Document distance: problem & algorithms

History

Al-Khwārizmi “al-kha-raz-mi” (c. 780-850)

- “father of algebra” with his book “The Compendious Book on Calculation by Completion & Balancing”
- linear & quadratic equation solving: some of the first algorithms

What is an Algorithm?

- Mathematical abstraction of computer program
- Computational procedure to solve a problem

Model of computation specifies
• what operations an algorithm is allowed
• cost (time, space, . . .) of each operation
• cost of algorithm = sum of operation costs

Random Access Machine (RAM)

• Random Access Memory (also abbreviated RAM) modeled by a big array
• Θ(1) registers (each 1 word)
• In Θ(1) time, can
 – load word @ \(r_i \) into register \(r_j \)
 – compute (+, −, ∗, /, &, |, ^) on registers
 – store register \(r_j \) into memory @ \(r_i \)
• What’s a word? \(w \geq \log \) (memory size) bits to store address
 – assume basic objects (e.g., int) fit in word
 – Lectures 11 and 12 in the course deal with big numbers
• realistic and powerful → implement abstractions
Pointer Machine

- dynamically allocated objects
- object has $O(1)$ fields
- field = word (e.g., int) or pointer to object/null (a.k.a. reference)
- weaker than (can be implemented on) RAM

Python Model

Python lets you use either mode of thinking

1. “list” is actually an array \rightarrow RAM

 \[L[i] = L[j] + 5 \rightarrow \Theta(1) \text{ time} \]

2. object with $O(1)$ attributes (including references) \rightarrow pointer machine

 \[x = x.next \rightarrow \Theta(1) \text{ time} \]

Python has many other operations. To determine their cost, imagine implementation in terms of (1) or (2):
1. list
 (a) \(L.append(x) \rightarrow \theta(1) \) time
 obvious if you think of infinite array
 but how would you have \(> 1 \) on RAM?
 via table doubling [Lecture 9]

 (b) \[L = L_1 + L_2 \] \(\equiv \) \(L = [\] \rightarrow \theta(1) \)
 \(\text{for } x \text{ in } L_1: \)
 \(\text{L.append(x) } \rightarrow \theta(1) \) \(\{ \theta(|L_1|) \} \)
 \(\text{for } x \text{ in } L_2: \)
 \(\text{L.append(x) } \rightarrow \theta(1) \) \(\{ \theta(|L_2|) \} \)

 (c) \(L_1.extend(L_2) \equiv \text{for } x \text{ in } L_2: \)
 \(\text{L1.append(x) } \rightarrow \theta(1) \) \(\{ \theta(1 + |L_2|) \text{ time} \} \)

 (d) \(L_2 = L_1[i : j] \equiv L_2 = [\] \)
 \(\text{for } k \text{ in range}(i, j): \)
 \(\text{L2.append(L1[i]) } \rightarrow \theta(1) \) \(\{ \theta(j - i + 1) = O(|L|) \} \)

 (e) \(b = x \text{ in } L \equiv \text{for } y \text{ in } L: \)
 \(\& \text{L.index(x)} \text{ if } x == y: \)
 \(\& \text{L.find(x)} \)
 \(b = True; \)
 \(\text{break} \)
 \(\text{else} \)
 \(b = False \)
 \(\theta(\text{index of } x) = \theta(|L|) \)

 (f) \(\text{len(L)} \rightarrow \theta(1) \) time - list stores its length in a field

 (g) \(\text{L.sort()} \rightarrow \theta(|L| \log |L|) \) - via comparison sort [Lecture 3, 4 & 7]

2. tuple, str: similar, (think of as immutable lists)

3. dict: via hashing [Unit 3 = Lectures 8-10]
 \(D[key] = \text{val} \)
 \(\text{key in } D \) \(\{ \theta(1) \text{ time w.h.p.} \} \)

4. set: similar (think of as dict without vals)
Document Distance Problem — compute $d(D_1, D_2)$

The document distance problem has applications in finding similar documents, detecting duplicates (Wikipedia mirrors and Google) and plagiarism, and also in web search ($D_2 = \text{query}$).

Some Definitions:

- **Word** = sequence of alphanumeric characters
- **Document** = sequence of words (ignore space, punctuation, etc.)

The idea is to define distance in terms of shared words. Think of document D as a vector: $D[w] = \#$ occurrences of word w. For example:

![Diagram](image_url)

Figure 2: $D_1 = \text{“the cat”}$, $D_2 = \text{“the dog”}$
As a first attempt, define document distance as

\[d'(D_1, D_2) = D_1 \cdot D_2 = \sum_w D_1[w] \cdot D_2[w] \]

The problem is that this is not scale invariant. This means that long documents with 99\% same words seem farther than short documents with 10\% same words. This can be fixed by normalizing by the number of words:

\[d''(D_1, D_2) = \frac{D_1 \cdot D_2}{|D_1| \cdot |D_2|} \]

where \(|D_i|\) is the number of words in document \(i\). The geometric (rescaling) interpretation of this would be that:

\[d(D_1, D_2) = \arccos(d''(D_1, D_2)) \]

or the document distance is the angle between the vectors. An angle of 0° means the two documents are identical whereas an angle of 90° means there are no common words. This approach was introduced by [Salton, Wong, Yang 1975].

Document Distance Algorithm

1. split each document into words
2. count word frequencies (document vectors)
3. compute dot product (& divide)

Define:
\[
\begin{align*}
 n & : \#\text{words} \\
 |word| & : \#\text{characters in word} \\
 |doc| & : \#\text{characters in document} = \sum |word| \\
\end{align*}
\]

(1) Splitting:
\[
\begin{array}{ll}
 \text{for char in doc:} & \Theta(|doc|) \\
 \quad \text{if not alphanumeric} & \Theta(1) \\
 \quad \text{add previous word} & \Theta(1) \\
 \quad \text{(if any) to list} & \Theta(1) \\
 \quad \text{start new word} & \Theta(1) \\
\end{array}
\]
(2) sort word list \(\leftarrow O(n \log n \cdot |word|) \) where \(n \) is \#words

for word in list:
 if same as last word:
 increment counter
 else:
 add last word and count to list

\[O(\sum |word|) = O(|doc|) \]

\(\Theta(1) \)

if words equal:
 \(\Theta(1) \)

\(\Theta(n) \) \(\Theta(n_1 \cdot n_2) \)

(3) for word, count1 in doc1:
 \(\Theta(n_1) \)

if word, count2 in doc2:
 \(\Theta(n_2) \)

\[\text{total} += \text{count1} \cdot \text{count2} \]

\(\Theta(1) \)

\(O(\sum |word|) = O(|doc|) \)

Dictionary Approach

(2)' count = {}

for word in doc:
 if word in count:
 \(\Theta(|word|) + \Theta(1) \) \(O(|doc|) \) w.h.p.
 \[\text{else} \]
 \[\text{count[word]} += 1 \]

\(\Theta(1) \)

(3)' as above \(\rightarrow O(|doc_1|) \) w.h.p.