Searching for Pattern in Text

Goal: preprocess T such that given P one can quickly find one (all) occurrence(s) of P in T

- Exact
- Approximate (occurrence of P with some errors)

Locality Sensitive Hashing

A very popular solution (practical!)

- **Preprocessing**: hash database using a special family of hash functions
- **Query time**: hash query, return closest point in a bucket

The Paris Kanellakis Theory and Practice Award 2012

Andrei Broder
Google

Moses Charikar
Princeton

Piotr Indyk
MIT
Searching for Pattern in Text

Goal: preprocess T such that given P one can quickly find one (all) occurrence(s) of P in T

- Case 0: known pattern length m
- Case 1: arbitrary pattern length m
- Case 2: P has some errors

Case 0: Known pattern length

- Suppose that m is fixed in advance. How do we preprocess T so that we can quickly find P in T?
- Hashing!
 - Each m-length substring T_i of T is an m-digit number
 - Build a hashing data structure on $T_1…T_n$
 - Given P, it suffices to evaluate $h(P)$ and lookup the answer
 - How quickly can we perform the lookup?
 - $O(m)$ time, using dot product hashing from before

Case 1: Unknown pattern length

- Suppose that m is fixed in advance. How do we preprocess T so that we can quickly find P in T?
- Hashing!
 - Each m-length substring T_i of T is an m-digit number
 - Build a hashing data structure on $T_1…T_n$
 - Given P, it suffices to evaluate $h(P)$ and lookup the answer
 - How quickly can we perform the lookup?
 - $O(m)$ time, using dot product hashing from before
Definition: Suffix tree ST for text T (of length n)
- Rooted, directed tree ST, n leaves, numbered $1..n$
- Path to leaf i spells out the suffix $T[i..n]$, by concatenating edge labels
- Common prefixes share common paths, diverge to form internal nodes
Suffix tree: definition

\(T = \text{"xabxac"} \)

- **Common prefixes share common paths, diverge to form internal nodes**
- **Path to leaf**
- **Rooted, directed tree**

• **Definition:** Suffix tree \(ST \) for text \(T \) (of length \(n \))
 - Rooted, directed tree \(ST \), \(n \) leaves, numbered \(1..n \)
 - Path to leaf \(i \) spells out the suffix \(T[i..] \), by concatenating edge labels
 - Common prefixes share common paths, diverge to form internal nodes

Suffix tree: storage

\(T = \text{"xabxac"} \)

• **How much space do we need to represent it?**
 - Only \(O(n) \)!
 - Each path corresponds to a substring of \(T \)
 - \(\Rightarrow \) we can represent it as a pair \([i..j]\)
 - We get binary tree with \(n \) leaves \(\Rightarrow O(n) \) nodes total

- **Definition:** Suffix tree \(ST \) for text \(T \) (of length \(n \))
 - Rooted, directed tree \(ST \), \(n \) leaves, numbered \(1..n \)
 - Path to leaf \(i \) spells out the suffix \(T[i..] \), by concatenating edge labels
 - Common prefixes share common paths, diverge to form internal nodes
Exact string matching with suffix trees

- Given the suffix tree for text T
- Search pattern P in $O(m)$ time
 - For every character in P, traverse the appropriate path of the tree, reading one character each time
 - If P is not found in a path, P does not occur in T
 - If P is found in its entirety, then all occurrences of P in T are exactly the children of that node
 - Every child corresponds to exactly one occurrence
 - Simply list each of the leaf indices

Examples:

$P = \ldots x a b \ldots$
$P = \ldots x u g \ldots$

Case 2: Known pattern length but mismatches

Hamming distance $= 2$

- Suppose that we want to tolerate (about) r mismatches
- What should we do?

Locality-Sensitive Hashing

- Idea: construct hash functions g such that for any strings p,q:
 - If $D(p,q) \leq r$, then $\Pr[g(p) = g(q)]$ is “high”
 - If $D(p,q) > c r$, then $\Pr[g(p) = g(q)]$ is “small”
 - c is an approximation factor
- Then we can solve the problem by hashing

Approximate Near Neighbor

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
 - If there is a point $p \in P$, $D(p,q) \leq r$ then it returns $p' \in P$, $D(p',q) \leq cr$
- Algorithm is randomized
A family H of functions h is called (P_1, P_2, r, c, r)-sensitive, if for any p, q:
- If $D(p, q) < r$ then $Pr[h \{ h(p) = h(q) \}] > P_1$
- If $D(p, q) > c r$ then $Pr[h \{ h(p) = h(q) \}] < P_2$

Can we design LSH for Hamming distance such that $P_1 > P_2$?

Use hash functions of the form $h_i(p) = p_i$, i.e., sample the i-th bit of p.

Probabilities:
$$Pr[h(p) = h(q)] = 1 - D(p, q)/m$$
$$P_1 = 1 - r/m > 1 - c r/m = P_2$$

Analysis

Lemma 1: the algorithm solves c-approximate NN with:
- Number of hash functions:
 $$L = C n^\rho, \rho = \log(1/P1)/\log(1/P2)$$
 ($C = C(P1, P2)$ is a constant for $P1$ bounded away from 0)
- Constant success probability per query q

Lemma 2: for Hamming LSH functions, we have $\rho = 1/c$

Corollary: search time $O(m n^{1/c})$ for Hamming

Algorithm

We use functions of the form $g(p) = \langle h_{i1}(p), h_{i2}(p), \ldots, h_{ik}(p) \rangle$

I.e., sample k bits at random

Preprocessing:
- Select $g_1 \ldots g_L$
- For all $p \in \mathbb{P}$, hash p to buckets $g_1(p) \ldots g_L(p)$

Query:
- Retrieve the points from buckets $g_1(q), g_2(q), \ldots$, until
 - Either the points from all L buckets have been retrieved, or
 - Total number of points retrieved exceeds $3L$
- Answer the query based on the retrieved points
- Total time: $O(mL)$

Proof of Lemma 1 by picture

Points in $\{0, 1\}^m$

Collision prob. for $k=1..3$, $L=1..3$ (recall: $L = \#indices, k = \#h's$)

Distance ranges from 0 to $m=10$

![Graph showing collision probability for different L values](image)
Proof

• Define:
 – p: a point such that $||p-q|| \leq r$
 – $\text{FAR}(q) = \{ p' \in \mathbb{P} : ||p'-q|| > cr \}$
 – $B_i(q) = \{ p' \in \mathbb{P} : g_i(p') = g_i(q) \}$

• Will show that both events occur with >0 probability:
 – E_1: $g_i(p) = g_i(q)$ for some $i=1\ldots L$
 – E_2: $\Sigma_i |B_i(q) \cap \text{FAR}(q)| < 3L$

Proof, ctd.

• Set $k = \text{ceil}(\log_{1/p_2} n)$
• For $p' \in \text{FAR}(q)$,
 $$\Pr[g_i(p') = g_i(q)] \leq P_2^k \leq 1/n$$
• $\mathbb{E}[|B_i(q) \cap \text{FAR}(q)|] \leq 1$
• $\mathbb{E}[\Sigma_i |B_i(q) \cap \text{FAR}(q)|] \leq L$
• $\Pr[\Sigma_i |B_i(q) \cap \text{FAR}(q)| \geq 3L] \leq 1/3$

Proof, end

• $\Pr[g_i(p) = g_i(q)] \geq 1/P_1^k \geq P_1^{-\log_{1/p_2}(n)+1}$
 $ \geq P_1/n^p = 1/L$
• $\Pr[g_i(p) \neq g_i(q) , i=1..L] \leq (1-1/L)^L \leq 1/e$

• $\Pr[E_1 \text{ not true}] + \Pr[E_2 \text{ not true}] \leq 1/3 + 1/e = 0.7012.$
• $\Pr[E_1 \cap E_2] \geq 1-(1/3+1/e) \approx 0.3$
Proof of Lemma 2

• Statement: for
 – \(P_1 = 1 - \frac{r}{d} \)
 – \(P_2 = 1 - \frac{cr}{d} \)
 we have \(\rho = \frac{\log(P_1)}{\log(P_2)} \leq \frac{1}{c} \)

• Proof:
 – Need \(P_1^c \geq P_2 \)
 – But \((1-x)^c \geq (1-cx) \) for any \(1 > x > 0, \ c > 1 \)