Sublinear algorithms

6.046 Design and Analysis of Algorithms
MIT
Michael Kapralov
15 May 2014

Algorithms in P=runtime polynomial in size of input

Ideally, linear time (polynomial of degree 1)

Example: sorting (time $n \log n$)

Sublinear algorithms:

Do we need to read the entire input?

Can we make runtime polynomial of degree < 1?

Sometimes yes! (today’s lecture)

Sublinear algorithms=algorithms that use resources asymptotically smaller than the size of their input

Examples of resources we want to minimize:
Sublinear algorithms=algorithms that use resources asymptotically smaller than the size of their input

Examples of resources we want to minimize:
- time (do not even read the whole input!)
- space (scan through the whole input, but maintain small state)
- communication (distributed algorithms)

Streaming (sublinear space) in previous lecture.

Today: sublinear time algorithms for finding matchings

Matching

Let $G = (P, Q, E)$ be a bipartite graph $|P| = |Q| = n$, $|E| = m$

- $M \subseteq E$ is a matching if no two edges in M share an endpoint
Matching

- Let $G = (P, Q, E)$ be a bipartite graph
 - $|P| = |Q| = n$, $|E| = m$
- $M \subseteq E$ is a matching if no two edges in M share an endpoint

Maximum matching problem

Given a graph G, find a matching $M \subseteq E$ of maximum possible cardinality

Maximum matching problem

Can use Hopcroft-Karp to obtain $O(m\sqrt{n})$ runtime

Today: special case of regular bipartite graphs, $O(n\log n)$ runtime!
Maximum matching problem

Can use Hopcroft-Karp to obtain $O(m \sqrt{n})$ runtime

Today: special case of regular bipartite graphs, $O(n \log n)$ runtime!

Applications to
 - task scheduling

Maximum matching problem

Can use Hopcroft-Karp to obtain $O(m \sqrt{n})$ runtime

Today: special case of regular bipartite graphs, $O(n \log n)$ runtime!

Applications to
 - task scheduling (getting coffee at the Forbes cafe)

Background

Let $G = (P, Q, E), |P| = |Q| = n, |E| = m$ be a bipartite graph

- G is d-regular if the degree of every vertex is equal to d
- Number of edges is $m = nd$

Regular bipartite graphs

- Finding matchings in $O(n \log n)$ expected time
- Edge coloring

Background

- Let $G = (P, Q, E), |P| = |Q| = n, |E| = m$ be a bipartite graph
- G is d-regular if the degree of every vertex is equal to d
- Number of edges is $m = nd$
- a matching M is perfect if $|M| = n$
- Hall's marriage theorem: every d-regular bipartite graph has a perfect matching
Let $G = (P, Q, E), |P| = |Q| = n, |E| = m$ be a bipartite graph

- G is d-regular if the degree of every vertex is equal to d
- a matching M is perfect if $|M| = n$
- Hall's marriage theorem: every d-regular bipartite graph has a perfect matching algorithmic proof!

Complex structures when $d \geq 3$
Sublinear algorithm

Assume that graph is given in adjacency array representation.

Theorem
There exists a randomized $O(n \log n)$ expected time algorithm for finding a perfect matching in a d-regular bipartite graph.

Also $O(n \log n)$ time with high probability.

Need $\Omega(n)$ to output matching! Within $O(\log n)$ of output complexity.

Given a partial matching M, how can one increase its size?

An augmenting path wrt a partial matching M
- starts at an unmatched node on the left
- alternates between unmatched and matched edges
- ends at an unmatched node on the right

Given a partial matching M, how can one increase its size?

An augmenting path wrt a partial matching M
- starts at an unmatched node on the left
- alternates between unmatched and matched edges
- ends at an unmatched node on the right
Alternating random walk
Natural randomization: alternate between taking
- a uniformly random unmatched edge from P to Q
- the matched edge from Q to P, as before

An augmenting path can be obtained by removing possible
loops

\[
\begin{align*}
P & \xrightarrow{\text{uniformly random}} Q \\
Q & \xrightarrow{\text{matched}} P
\end{align*}
\]
Alternating random walk

Natural randomization: alternate between taking
- a uniformly random unmatched edge from \(P\) to \(Q\)
- the matched edge from \(Q\) to \(P\), as before

An augmenting path can be obtained by removing possible loops

Algorithm

Let \(M_0 := \emptyset\). For each \(k = 1, \ldots, n\)
1. Run the alternating random walk wrt \(M_{k-1}\) until it hits an unmatched vertex in \(Q\)
2. Augment along the path obtained from the walk, set \(M_k\) equal to the new matching

Theorem

The algorithm above finds a perfect matching in \(O(n \log n)\) expected time.
Define a graph H such that alternating random walk on G wrt M is a simple random walk on H.

Connect source s and sink t with d edges to unmatched nodes.

Contract each pair $(u,v) \in M$ into supernode.

The algorithm can be restated as follows.

Let $M_0 := \emptyset$. For each $k = 1, \ldots, n$
1. Run the simple random walk from s in the matching graph $H(G, M_{k-1})$ until it hits t
2. Augment along the path obtained from the walk, set M_k equal to the new matching.

Main lemma

Lemma
Let M be a matching that leaves $2k$ nodes unmatched. The expected time until the simple random walk in the matching graph H starting from s hits t is at most $4 + 2n/k$.

- reduce to bounding return time
- bound stationary distribution of the random walk in H.
Main lemma

Lemma

Let M be a matching that leaves $2k$ nodes unmatched. The expected time until the simple random walk in the matching graph H starting from s hits t is at most $4 + 2n/k$.

- reduce to bounding return time
- bound stationary distribution of the random walk in H

Throwing darts randomly:

- board area is n
- target area is k

How many throws in expectation?

```
39 / 89
```
Augmenting a matching that leaves k nodes unmatched takes $4 + 2n/k$ expected time.

Target shrinks as matching gets larger!

The expected runtime is at most

$$\sum_{k=1}^{n} \left(4 + \frac{2n}{n+1-k} \right) = 2n(2+H_n) = 2n(2+\ln n),$$

where H_n is the n-th harmonic number.

Constants are small!
Main lemma

Lemma
Let M be a matching that leaves $2k$ nodes unmatched. The expected time until the simple random walk in the matching graph H starting from s hits t is at most $4 + 2n/k$.

Proof of main lemma

Identify s and t in the matching graph $H(G, M_k)$. The resulting graph $H^*(G, M_k)$ is a balanced directed graph.
Proof of main lemma

The resulting graph $H^*(G, M_k)$ is a balanced directed graph.

Fundamental Theorem of Markov Chains

Let $G = (V, E)$ be a

- strongly connected directed graph (i.e. there is a path from every vertex to every vertex)
- with a self-loop on every vertex (to avoid periodicities)

Then there exists a unique stationary distribution.

Lemma

If we add self-loops to every node, then the stationary distribution exists and is unique.

Proof.

There exists a (directed) path from every node to every node, as a consequence of the balanced property.

Proof of main lemma

Hence, for a vertex $u \in V_{H^*}$ the stationary distribution of the simple random walk is

$$\pi(u) = \frac{\text{out}(u)}{\sum_{u' \in V_{H^*}} \text{out}(u')}.$$

Crucial observation:

expected time for a random walk started at s to reach t in $H(G, M_k)$ equals expected return time to s in H^*, i.e. $1/\pi(s)$.

Proof of main lemma

The degree of s in H^* is $dk + 1$ (due to self-loop!). Hence, the expected number of steps before the random walk reaches t is at most

$$\frac{1}{\pi(s)} = \sum_{j \in V(H)} \frac{\text{out}(j)}{dk + 1} \leq \frac{(n-k)d + 2k(d+1) + dk + 1}{dk + 1} \leq 4 + \frac{2n}{k}.$$

Runtime of the algorithm

Finding an augmenting path with respect to a matching that leaves k nodes unmatched takes at most $2 + 4n/k$ expected time.

So, the expected runtime is at most

$$\sum_{k=1}^{n} 4 + \frac{2n}{n+1-k} = 2n(2 + H_n) = O(n \log n),$$

where H_n is the n-th harmonic number.
Runtime of the algorithm

Finding an augmenting path with respect to a matching that leaves k nodes unmatched takes at most $2 + 4n/k$ expected time.

So, the expected runtime is at most

$$\sum_{k=1}^{n} 4 + \frac{2n}{n+1-k} = 2n(2 + H_n) = O(n \log n),$$

where H_n is the n-th harmonic number.

The high probability result can be obtained via truncation of the random walk and standard concentration inequalities.

Any regular bipartite graph can be decomposed as a union of edge disjoint perfect matchings!
Any regular bipartite graph can be decomposed as a union of edge disjoint perfect matchings!

Edge coloring

- Regular bipartite graphs
- Finding matchings in $O(n\log n)$ expected time
- Edge coloring

Given graph G, assign colors to edges so that no vertex has two incident edges of the same color.
Edge coloring

Given graph G, assign colors to edges so that no vertex has two incident edges of the same color.

Equivalently, partition edge set into as few matchings as possible.

Can always color using $d_{\text{max}} + 1$ colors. NP-hard to distinguish between $d_{\text{max}} + 1$ and d_{max} in general graphs.

Edge coloring bipartite multigraphs

We will prove that d_{max} colors suffice in bipartite graphs!

And give an efficient algorithm for coloring.

Why is edge coloring useful?
One machine can perform one job in any given time slot. How many time slots do we need?

Color edges in d_{max} colors so that every vertex has distinct colors adjacent to it.

One can get a very simple $O(m \log n)$ algorithm for edge coloring:

1. Transform G into a bipartite regular graph with n' vertices and $m' = O(m)$ edges.
2. Take out matchings one by one, taking $O(n' \log n')$ time per matching.
3. Total time $O(d_{\text{max}} n' \log n') = O(m \log n)$.

Transform G into a bipartite regular graph:

1. merge nodes whose degree is at most $d_{\text{max}}/2$, so that at most one such node is left on each side
2. add vertices if needed
3. add $O(m)$ edges to give every vertex degree d_{max}.
Edge coloring bipartite multigraphs

- Diagram 1
- Diagram 2
- Diagram 3
- Diagram 4
- Diagram 5
- Diagram 6
Transform G into a bipartite regular graph:
1. merge nodes whose degree is at most $d_{\text{max}}/2$, so that at most one such node is left on each side
2. add vertices if needed
3. add $O(m)$ edges to give every vertex degree d_{max}.

Why is number of added edges $O(m)$?

One can get a very simple $O(m \log n)$ algorithm for edge coloring:
1. Transform G into a bipartite regular graph with n' vertices and $m' = O(m)$ edges.
2. Take out matchings one by one, taking $O(n' \log n')$ time per matching.
3. Total time $O(d_{\text{max}} n' \log n') = O(m \log n)$.

One can get a very simple $O(m \log n)$ algorithm for edge coloring:
1. Transform G into a bipartite regular graph with n' vertices and $m' = O(m)$ edges.
2. Take out matchings one by one, taking $O(n' \log n')$ time per matching.
3. Total time $O(d_{\text{max}} n' \log n') = O(m \log n)$.

Edge coloring bipartite multigraphs

One can get a very simple $O(m \log n)$ algorithm for edge coloring:

1. Transform G into a bipartite regular graph with n' vertices and $m' = O(m)$ edges.
2. Take out matchings one by one, taking $O(n' \log n')$ time per matching.
3. Total time $O(d_{\max} n' \log n') = O(m \log n)$.

How do we implement sampling?