Markov Chain Monte Carlo

6.046 Design and Analysis of Algorithms
MIT

Michael Kapralov

6 March 2014
Random walks on undirected graphs

Markov chains

Examples:
 - pagerank
 - card shuffling

Mixing time
Given undirected graph $G = (V, E)$

- Squirrel stands at vertex v_0
- Squirrel ate fermented pumpkin so doesn’t know what he is doing
Given undirected graph $G = (V, E)$

- Squirrel stands at vertex v_0
- Squirrel ate fermented pumpkin so doesn’t know what he is doing
- So jumps to a random neighbor v_1 of v_0
Given undirected graph $G = (V, E)$

- Squirrel stands at vertex v_0
- Squirrel ate fermented pumpkin so doesn’t know what he is doing
- So jumps to a random neighbor v_1 of v_0
- Jumps to a random neighbor v_2 of v_1
Given undirected graph $G = (V, E)$

Q: where is squirrel after t steps?

A: at some random location!

Q: with what probability is squirrel at vertex $v \in V$ after t steps?

Want to compute $x_t \in \mathbb{R}^n$ such that $x_t(i) = \Pr[squirrel \text{ at node } i \text{ at time } t]$.

Q: where is squirrel after t steps?
Given undirected graph $G = (V, E)$

Q: where is squirrel after t steps?

A: at some random location!

Q: with what probability is squirrel at vertex $v \in V$ after t steps?

Want to compute $x_t \in \mathbb{R}^n$ such that $x_t(i) = \Pr[\text{squirrel at node } i \text{ at time } t]$.

Let v_t be (random) location at time t.
Given undirected graph $G = (V, E)$

Q: where is squirrel after t steps?

A: at some random location!

Q: with what probability is squirrel at vertex $v \in V$ after t steps?

Want to compute $x_t \in \mathbb{R}^n$ such that

$$x_t(i) = \Pr[\text{squirrel at node } i \text{ at time } t].$$

Distribution of the random walk at time t
\(X_t \rightarrow X_{t+1} ? \)

Simplification: all nodes have the same degree \(d \)

\(x_0 = (1,0,0,0,0) \)

If \(u_1, u_2, \ldots, u_d \) are the \(d \) neighbors of \(v_0 \), then \(v_1 = u_i \) with probability \(1/d \)
$X_t \rightarrow X_{t+1}$?

Simplification: all nodes have the same degree d

$x_0 = (1, 0, 0, 0, 0, 0)$

If u_1, u_2, \ldots, u_d are the d neighbors of v_0, then $v_1 = u_i$ with probability $1/d$

So $x_1 = (0, 1/2, 0, 0, 1/2)$
$X_t \rightarrow X_{t+1}$?

Simplification: all nodes have the same degree d

$x_0 = (1, 0, 0, 0, 0)$

If u_1, u_2, \ldots, u_d are the d neighbors of v_0, then $v_1 = u_i$ with probability $1/d$

So $x_1 = (0, 1/2, 0, 0, 1/2)$

$x_2 = (1/2, 0, 1/4, 1/4, 0)$
$X_t \rightarrow X_{t+1}$?

Simplification: all nodes have the same degree d

$x_0 = (1, 0, 0, 0, 0)$

If u_1, u_2, \ldots, u_d are the d neighbors of v_0, then $v_1 = u_i$ with probability $1/d$

So $x_1 = (0, 1/2, 0, 0, 1/2)$

$x_2 = (1/2, 0, 1/4, 1/4, 0)$
$X_t \rightarrow X_{t+1}$?

Simplification: all nodes have the same degree d

$x_0 = (1,0,0,0,0)$

If u_1, u_2, \ldots, u_d are the d neighbors of v_0, then $v_1 = u_i$ with probability $1/d$

So $x_1 = (0,1/2,0,0,1/2)$

$x_2 = (1/2,0,1/4,1/4,0)$

Transition matrix

$$A = \begin{pmatrix}
0 & 1/2 & 0 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 & 0 \\
0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 0 & 1/2 & 0
\end{pmatrix}$$

$A_{ij} = \Pr[v_{t+1} = j|v_t = i]$
$X_t \rightarrow X_{t+1}$?

Simplification: all nodes have the same degree d

$x_0 = (1,0,0,0,0)$

If u_1, u_2, \ldots, u_d are the d neighbors of v_0, then $v_1 = u_i$ with probability $1/d$

So $x_1 = (0,1/2,0,0,1/2)$

$x_2 = (1/2,0,1/4,1/4,0)$

Transition matrix

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{pmatrix}$$

$A_{ij} = \Pr[v_{t+1} = j|v_t = i]$
X_t

Transition matrix:

$$A = D^{-1} M = \text{adj. matrix with row } i \text{ divided by } d_i$$

Then

$$x_t = x_0 A^t$$
X_t

Transition matrix:

$$A = D^{-1} M = \text{adj. matrix with row } i \text{ divided by } d_i$$

Then

$$x_t = x_0 A^t$$

Computing x_t fast?
\(X_t \)

Transition matrix:

\[
A = D^{-1} M = \text{adj. matrix with row } i \text{ divided by } d_i
\]

Then

\[
x_t = x_0 A^t
\]

Computing \(x_t \) fast?

- repeated squaring!
- compute
 \[
 A \rightarrow A^2 \rightarrow A^4 \rightarrow \ldots \rightarrow A^t
 \]
- then do matrix-vector product
Transition matrix:

\[A = D^{-1}M = \text{adj. matrix with row } i \text{ divided by } d_i \]

Then

\[x_t = x_0 A^t \]

Computing \(x_t \) fast?

- repeated squaring!
- compute
 \[A \rightarrow A^2 \rightarrow A^4 \rightarrow \ldots \rightarrow A^t \]
- then do matrix-vector product

Limiting distribution as \(t \rightarrow \infty \)?

\[x_\infty := \lim_{t \rightarrow \infty} x_t, \text{ on a 5-cycle?} \]
\(X_t \)

Transition matrix:

\[A = D^{-1} M = \text{adj. matrix with row } i \text{ divided by } d_i \]

Then

\[x_t = x_0 A^t \]

Computing \(x_t \) fast?

- repeated squaring!
- compute
 \[A \rightarrow A^2 \rightarrow A^4 \rightarrow \ldots \rightarrow A^t \]
- then do matrix-vector product

Limiting distribution as \(t \to \infty \)?

\[x_\infty := \lim_{t \to \infty} x_t, \text{ on a 5-cycle?} \]

\[x_\infty = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5} \right) \]
Verifying $x_t \rightarrow (1/5, 1/5, 1/5, 1/5, 1/5)$

Transition matrix:

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{pmatrix}$$

and

$$x_t = x_0 A^t$$

Run in Matlab:

```matlab
z=[1 0 0 0 0];
for t=1:25,
    disp(z);
    z=z*A;
end;
```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.3750</td>
<td>0.1250</td>
<td>0.1250</td>
<td>0.3750</td>
</tr>
<tr>
<td>0.3750</td>
<td>0.0625</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.0625</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.3125</td>
<td>0.1562</td>
<td>0.1562</td>
<td>0.3125</td>
</tr>
<tr>
<td>0.3125</td>
<td>0.1094</td>
<td>0.2344</td>
<td>0.2344</td>
<td>0.1094</td>
</tr>
<tr>
<td>0.1094</td>
<td>0.2734</td>
<td>0.1719</td>
<td>0.1719</td>
<td>0.2734</td>
</tr>
<tr>
<td>0.2734</td>
<td>0.1406</td>
<td>0.2227</td>
<td>0.2227</td>
<td>0.1406</td>
</tr>
<tr>
<td>0.1406</td>
<td>0.2480</td>
<td>0.1816</td>
<td>0.1816</td>
<td>0.2480</td>
</tr>
<tr>
<td>0.2480</td>
<td>0.1611</td>
<td>0.2148</td>
<td>0.2148</td>
<td>0.1611</td>
</tr>
<tr>
<td>0.1611</td>
<td>0.2314</td>
<td>0.1880</td>
<td>0.1880</td>
<td>0.2314</td>
</tr>
<tr>
<td>0.2314</td>
<td>0.1746</td>
<td>0.2097</td>
<td>0.2097</td>
<td>0.1746</td>
</tr>
<tr>
<td>0.1746</td>
<td>0.2206</td>
<td>0.1921</td>
<td>0.1921</td>
<td>0.2206</td>
</tr>
<tr>
<td>0.2206</td>
<td>0.1833</td>
<td>0.2064</td>
<td>0.2064</td>
<td>0.1833</td>
</tr>
<tr>
<td>0.1833</td>
<td>0.2135</td>
<td>0.1949</td>
<td>0.1949</td>
<td>0.2135</td>
</tr>
<tr>
<td>0.2135</td>
<td>0.1891</td>
<td>0.2042</td>
<td>0.2042</td>
<td>0.1891</td>
</tr>
</tbody>
</table>
Example 2: 4-cycle

Transition matrix:

\[
A = \begin{pmatrix}
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
\end{pmatrix}
\]

and

\[x_t = x_0 A^t\]

Run in Matlab:

```matlab
z=[1 0 0 0];
for t=1:25,
    disp(z);
    z=z*A;
end;
```
<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td>0.5000</td>
<td>0</td>
<td>0.5000</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 2: 4-cycle

Transition matrix:

\[
A = \begin{pmatrix}
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0
\end{pmatrix}
\]

and

\[x_t = x_0 A^t\]

Run in Matlab:

```matlab
z=[1 0 0 0 0];
for t=1:25,
    disp(z);
    z=z*A;
end;
Periodicity!
```
Example 2: 4-cycle

Transition matrix:

\[A = \begin{pmatrix}
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0
\end{pmatrix} \]

and

\[x_t = x_0 A^t \]

Run in Matlab:

```matlab
z=[1 0 0 0];
for t=1:25,
    disp(z);
    z=z*A;
end;
Periodicity!
```
Example 2: 4-cycle

Transition matrix:

\[
A = \begin{pmatrix}
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0
\end{pmatrix}
\]

and

\[x_t = x_0 A^t\]

Run in Matlab:

```
z=[1 0 0 0 0];
for t=1:25,
    disp(z);
    z=z*A;
end;
```

Periodicity!
Avoiding periodicity

What can we do to make the walk aperiodic?

This is called the lazy random walk (one loop would suffice):

\[
\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix} = \left(\frac{2}{3} \right) A_{\text{old}} + \left(\frac{1}{3} \right) I
\]
Avoiding periodicity

What can we do to make the walk aperiodic?

This is called the lazy random walk (one loop would suffice)

$$A_{new} = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{pmatrix} = (2/3)A_{old} + (1/3)I$$
Avoiding periodicity

What can we do to make the walk aperiodic?

\[
A_{\text{new}} = \begin{pmatrix}
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3
\end{pmatrix} = \left(\frac{2}{3}\right)A_{\text{old}} + \left(\frac{1}{3}\right)I
\]
Proving that $x_t \to (1/4, 1/4, 1/4, 1/4)$?

$$A_{new} = \begin{pmatrix}
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3
\end{pmatrix}$$

and

$$x_t = x_0 A_{new}^t$$

Idea: look at the eigenvalues of A (4 real eigenvalues since A is symmetric)

Matlab calculation: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 1/3, \lambda_4 = -1/3$.
Proving that $x_t \rightarrow (1/4, 1/4, 1/4, 1/4)$?

$$A_{\text{new}} = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}$$

and

$$x_t = x_0 A_{\text{new}}^t$$

Idea: look at the eigenvalues of A (4 real eigenvalues since A is symmetric)

Matlab calculation: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 1/3, \lambda_4 = -1/3$.

Which of these eigenvalues is most interesting?
Proving that $x_t \to (1/4, 1/4, 1/4, 1/4)$?

$$A_{new} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}$$

and

$$x_t = x_0 A_{new}^t$$

Idea: look at the eigenvalues of A (4 real eigenvalues since A is symmetric)

Matlab calculation: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 1/3, \lambda_4 = -1/3$.

Which of these eigenvalues is most interesting?

Why?
Proving that $x_t \to (1/4, 1/4, 1/4, 1/4)$?

$$A_{new} = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}$$

and

$$x_t = x_0 A_{new}^t$$

Idea: look at the eigenvalues of A (4 real eigenvalues since A is symmetric)

Matlab calculation: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 1/3, \lambda_4 = -1/3$.

Left eigenvector corresponding to $\lambda_1 = 1$?

$$e_1 = (1/4, 1/4, 1/4, 1/4)$$

Interesting...
Proving that $x_t \rightarrow (1/4, 1/4, 1/4, 1/4)$?

$$A_{new} = \begin{pmatrix} 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \end{pmatrix}$$

and

$$x_t = x_0 A_{new}^t$$

Express x_0 in the eigenbasis of A_{new}:

$$x_0 = a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4, \quad e_i A_{new} = \lambda_i e_i, i = 1, 2, 3, 4$$
Proving that \(x_t \to (1/4, 1/4, 1/4, 1/4) \)?

\[
A_{\text{new}} = \begin{pmatrix}
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3 \\
\end{pmatrix}
\]

and

\[
x_t = x_0 A_{\text{new}}^t
\]

Express \(x_0 \) in the eigenbasis of \(A_{\text{new}} \):

\[
x_0 = a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4, \quad e_i A_{\text{new}} = \lambda_i e_i, i = 1, 2, 3, 4
\]

Now

\[
x_t = x_0 A_{\text{new}}^t = a_1 e_1 A_{\text{new}}^t + a_2 e_2 A_{\text{new}}^t + a_3 e_3 A_{\text{new}}^t + a_4 e_4 A_{\text{new}}^t
\]
Proving that \(x_t \to (1/4, 1/4, 1/4, 1/4) \)?

\[
A_{new} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\]

and

\[
x_t = x_0 A_{new}^t
\]

Express \(x_0 \) in the eigenbasis of \(A_{new} \):

\[
x_0 = a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4, \quad e_i A_{new} = \lambda_i e_i, i = 1, 2, 3, 4
\]

Now

\[
x_t = x_0 A_{new}^t = a_1 e_1 A_{new}^t + a_2 e_2 A_{new}^t + a_3 e_3 A_{new}^t + a_4 e_4 A_{new}^t
\]

\[
= a_1 \lambda_1^t e_1 + a_2 \lambda_2^t e_2 + a_3 \lambda_3^t e_3 + a_4 \lambda_4^t e_4
\]
Proving that $x_t \rightarrow (1/4, 1/4, 1/4, 1/4)$?

$$A_{\text{new}} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}$$

and

$$x_t = x_0 A_t^{\text{new}}$$

Express x_0 in the eigenbasis of A_{new}:

$$x_0 = a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4, \quad e_i A_{\text{new}} = \lambda_i e_i, i = 1, 2, 3, 4$$

Now

$$x_t = x_0 A_t^{\text{new}} = a_1 e_1 A_t^{\text{new}} + a_2 e_2 A_t^{\text{new}} + a_3 e_3 A_t^{\text{new}} + a_4 e_4 A_t^{\text{new}}$$

$$= a_1 \lambda_1^t e_1 + a_2 \lambda_2^t e_2 + a_3 \lambda_3^t e_3 + a_4 \lambda_4^t e_4$$

$$\rightarrow a_1 e_1, \quad \text{and must have } a_1 = 1$$
Proving that $x_t \to (1/4, 1/4, 1/4, 1/4)$?

$$A_{\text{new}} = \begin{pmatrix}
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3
\end{pmatrix}$$

and

$$x_t = x_0 A_{\text{new}}^t$$

Matlab calculation: $\lambda_1 = 1, \lambda_2 = \lambda_3 = 1/3, \lambda_4 = -1/3$.

General facts:
- largest eigenvalue equal to 1
- all other eigenvalues have absolute value < 1 if connected

Exact same proof for the lazy r.w. on any connected undirected graph
- Random walks on undirected graphs
- **Markov chains**
- Examples:
 - pagerank
 - card shuffling
- Mixing time
General setup

Let $G = (V, E)$ be a

- strongly connected weighted directed graph
General setup

Let $G = (V, E)$ be a

- strongly connected weighted directed graph (i.e. there is a path from every vertex to every vertex)
- with a self-loop on every vertex (to avoid periodicities)

The weights correspond to probabilities:

- p_{ij} of edge $(ij) \in E$ represents probability of transitioning from i to j
- for all $i \in V$: $\sum_{j \in V} p_{ij} = 1$

Transition matrix: $A = (p_{ij})$

$$A = \begin{pmatrix}
0.9 & 0.075 & 0.025 \\
0.15 & 0.8 & 0.05 \\
0.25 & 0.25 & 0.5
\end{pmatrix}$$
General setup

Transition matrix: $A = (p_{ij})$
Still true that $x_t = x_0 A^t$.

Claim

A has eigenvalue 1 (with multiplicity 1), and there is a unique positive vector x such that $xA = x$ and $\sum_i x_i = 1$.
General setup

Transition matrix: \(A = (p_{ij}) \)
Still true that \(x_t = x_0 A^t \).

Claim

A has eigenvalue 1 (with multiplicity 1), and there is a unique positive vector \(x \) such that \(xA = x \) and \(\sum_i x_i = 1 \).

Theorem

For any \(x_0 \), \(x_t \to x_\infty \) as \(t \to \infty \)
\((x_\infty \) is called the stationary distribution)
General setup

Transition matrix: \(A = (p_{ij}) \)
Still true that \(x_t = x_0A^t \).

Claim

A has eigenvalue 1 (with multiplicity 1), and there is a unique positive vector \(x \) such that \(xA = x \) and \(\sum_i x_i = 1 \).

Theorem

For any \(x_0 \), \(x_t \to x_\infty \) as \(t \to \infty \)
\((x_\infty \) is called the stationary distribution)

Q1 Why is \(x_\infty \) interesting?
Q2 How fast does \(x_t \to x_\infty \)?
Random walks on undirected graphs
Markov chains
Examples:
 pagerank
 card shuffling
Mixing time
PageRank

No better proof that something is useful than having cool applications!

$G =$ hyperlink graph

Pagerank of webpage w

\approx

probability that web-surfer starts at some central page (Yahoo!) and arrives at w by clicking random links
PageRank

No better proof that something is useful than having cool applications!

$G=$ hyperlink graph

Pagerank of webpage w

\approx

probability that web-surfer starts at some central page (Yahoo!) and arrives at w by clicking random links

Q: in how many steps?
PageRank

Choose

- initial distribution x_0 (e.g. Yahoo!)
- reset probability $\varepsilon \in [0, 1]$ (e.g. $\varepsilon = 0.15$)

Random surfer at each step

- Takes a random outgoing edge with probability $1 - \varepsilon$
- Jumps to a random node chosen according to x_0 o.w.
PageRank

Choose
 - initial distribution x_0 (e.g. Yahoo!)
 - reset probability $\varepsilon \in [0, 1]$ (e.g. $\varepsilon = 0.15$)

Random surfer at each step
 - Takes a random outgoing edge with probability $1 - \varepsilon$
 - Jumps to a random node chosen according to x_0 o.w.

Thus, stationary distribution satisfies

$$x(1 - \varepsilon)A + \varepsilon x_0 = x$$
PageRank

Choose

- initial distribution x_0 (e.g. Yahoo!)
- reset probability $\varepsilon \in [0, 1]$ (e.g. $\varepsilon = 0.15$)

Random surfer at each step

- Takes a random outgoing edge with probability $1 - \varepsilon$
- Jumps to a random node chosen according to x_0 o.w.

Thus, stationary distribution satisfies

$$xA = x$$
Choose
- initial distribution x_0 (e.g. Yahoo!)
- reset probability $\epsilon \in [0,1]$ (e.g. $\epsilon = 0.15$)

Random surfer at each step
- Takes a random outgoing edge with probability $1 - \epsilon$
- Jumps to a random node chosen according to x_0 o.w.

Thus, stationary distribution satisfies

$$x(1 - \epsilon)A + \epsilon x_0 = x$$
PageRank

Choose

- initial distribution x_0 (e.g. Yahoo!)
- reset probability $\epsilon \in [0, 1]$ (e.g. $\epsilon = 0.15$)

Random surfer at each step

- Takes a random outgoing edge with probability $1 - \epsilon$
- Jumps to a random node chosen according to x_0 o.w.

Thus, stationary distribution satisfies

$$x(1 - \epsilon)A + \epsilon x_0 = x$$

Solve for x?

$$x = \epsilon x_0 (I - (1 - \epsilon)A)^{-1}$$
Computing PageRank

Idea 1: use

$$x = \varepsilon x_0 (I - (1 - \varepsilon)A)^{-1}$$

Crawl the web, create giant A, invert giant A. An $n \times n$ matrix for $n \approx 1.9$ billion...

$\Theta(n^2)$ space, $\Theta(n^3)$ for Gaussian elimination...
Idea 1: use

$$x = \varepsilon x_0 (I - (1 - \varepsilon)A)^{-1}$$

Crawl the web, create giant A, invert giant A. An $n \times n$ matrix for $n \approx 1.9$ billion...

$\Theta(n^2)$ space, $\Theta(n^3)$ for Gaussian elimination...

Idea 2: Note

$$(I - (1 - \varepsilon)A)^{-1} = I + (1 - \varepsilon)A + (1 - \varepsilon)^2 A^2 + \ldots,$$

so

$$x = \varepsilon x_0 + \varepsilon (1 - \varepsilon)x_0 A + \varepsilon (1 - \varepsilon)^2 x_0 A^2 + \ldots,$$
Computing PageRank

Idea 1: use

\[x = \varepsilon x_0 (I - (1 - \varepsilon)A)^{-1} \]

Crawl the web, create giant \(A \), invert giant \(A \). An \(n \times n \) matrix for \(n \approx 1.9 \text{billion} \)...

\(\Theta(n^2) \) space, \(\Theta(n^3) \) for Gaussian elimination...

Idea 2: Note

\[(I - (1 - \varepsilon)A)^{-1} = I + (1 - \varepsilon)A + (1 - \varepsilon)^2 A^2 + \ldots, \]

so

\[x = \varepsilon x_0 + \varepsilon (1 - \varepsilon) x_0 A + \varepsilon (1 - \varepsilon)^2 x_0 A^2 + \ldots, \]
Computing PageRank

\[x = \varepsilon x_0 + \varepsilon (1 - \varepsilon) x_0 A + \varepsilon (1 - \varepsilon)^2 x_0 A^2 + \ldots, \]

Let \(L \) be a geometric random variable with parameter \(\varepsilon \):

\[\Pr[L = k] = \varepsilon (1 - \varepsilon)^k \quad \text{for all} \quad k \geq 0. \]

Then

\[x = \mathbf{E}[x_0 A^L] \]
Computing PageRank

\[x = \varepsilon x_0 + \varepsilon (1 - \varepsilon) x_0 A + \varepsilon (1 - \varepsilon)^2 x_0 A^2 + \ldots, \]

Let \(L \) be a geometric random variable with parameter \(\varepsilon \):

\[\Pr[L = k] = \varepsilon (1 - \varepsilon)^k \quad \text{for all} \quad k \geq 0. \]

Then

\[x = \mathbb{E}[x_0 A^L] \]

Q: How to approximate \(x \)?

- Sample length \(L \) from geometric distribution
- Run random walk of length \(L \), record where it ended up
- Repeat sufficient number of times
Computing PageRank

\[x = \varepsilon x_0 + \varepsilon (1 - \varepsilon) x_0 A + \varepsilon (1 - \varepsilon)^2 x_0 A^2 + \ldots, \]

Let \(L \) be a geometric random variable with parameter \(\varepsilon \):

\[\Pr[L = k] = \varepsilon (1 - \varepsilon)^k \quad \text{for all} \quad k \geq 0. \]

Then

\[x = \mathbb{E}[x_0 A^L] \]

Q: How to approximate \(x \)?

- Sample length \(L \) from geometric distribution
- Run random walk of length \(L \), record where it ended up
- Repeat sufficient number of times

Definition of ‘sufficient’ depends on quality of approximation.

Can approximate top few elements of \(x \) efficiently (what is needed for ranking).
Random walks on undirected graphs
Markov chains
Examples:
 - pagerank
 - card shuffling
Mixing time
Card shuffling

Q1: Why shuffle a deck?
Q1: Why shuffle a deck?

A1: well, to start from a uniformly random permutation of the cards
Card shuffling

Q1: Why shuffle a deck?

A1: well, to start from a uniformly random permutation of the cards

Q2: How many permutations are there?

$52! \approx 2^{257} \approx 10^{77}$ – how large is that?

Examples of shuffles:

- top-in-at-random
- riffle-shuffle
Card shuffling

Q1: Why shuffle a deck?

A1: well, to start from a uniformly random permutation of the cards

Q2: How many permutations are there?

A2: $52! \approx 2^{257} \approx 10^{77}$ – how large is that?

Q3: Getting a random permutation?
Shuffling as a Markov Chain

Graph: - one node per permutation of the deck.

- edge \((u,v)\): \(v\) is reachable in one move from \(u\) (specific to shuffle)

While performing the shuffle we jump from node to node.

Q: Stationary distribution of a correct shuffle?

Probability \(1/52!\) on each permutation.
Random walks on undirected graphs

Markov chains

Examples:
- pagerank
- card shuffling

Mixing time
Mixing time

Q1: How many steps suffice for uniformity?

A1: Meaningless question: no matter how long you go on for, there is a trace of the permutation you started with.

Q2: How many steps suffice to be close to uniform?

A2: Depends on the shuffle

- Top-In-At-Random: \(\approx 300 \) repetitions suffice, i.e. distance \((x^{300}, \text{uniform})\) < 1%

- Riffle-Shuffle: \(\approx 10 \) repetitions suffice: distance \((x^{10}, \text{uniform})\) < 1%

Different shuffles have different graphs, and results converge to uniform at different speeds.
Mixing time

Q1: How many steps suffice for uniformity?

A1: Meaningless question: no matter how long you go on for, there is a trace of the permutation you started with.

Q2: How many steps suffice to be close to uniform?

A2: Depends on the shuffle

- **Top-In-At-Random:** \(\approx 300 \) repetitions suffice, i.e. distance \((x^{300}, \text{uniform}) < 1\% \)

- **Riffle-Shuffle:** \(\approx 10 \) repetitions suffice: distance \((x^{10}, \text{uniform}) < 1\% \)

Different shuffles have different graphs, and results converge to uniform at different speeds.
Mixing time

Q1: How many steps suffice for uniformity?

A1: Meaningless question: no matter how long you go on for, there is a trace of the permutation you started with.

Q2: How many steps suffice to be close to uniform?
Mixing time

Q1: How many steps suffice for uniformity?

A1: Meaningless question: no matter how long you go on for, there is a trace of the permutation you started with.

Q2: How many steps suffice to be close to uniform?

A2: Depends on the shuffle
- Top-In-At-Random: \(\approx 300 \) repetitions suffice, i.e.
 \[
 \text{distance}(x_{300}, \text{uniform}) < 1\%
 \]
- Riffle-Shuffle: \(\approx 10 \) repetitions suffice:
 \[
 \text{distance}(x_{10}, \text{uniform}) < 1\%
 \]

Different shuffles have different graphs, and results converge to uniform at different speeds.
Mixing time (formally)

Let x_0, x_1, x_2, \ldots be a Markov chain with stationary distribution x_∞.

Definition

The *mixing time* of the Markov chain is the minimum τ such that $d(x_\tau, x_\infty) \leq 0.01$. Where $d(x, y)$ captures the rate at which $x_t \to x_\infty$. When we design Markov chains, we would like τ_{mix} to be small. τ_{mix} depends on the connectivity of the Markov chain.
Mixing time (formally)

Let x_0, x_1, x_2, \ldots be a Markov chain with stationary distribution x_∞.

Definition
The *mixing time* of the Markov chain is the minimum τ such that $d(x_\tau, x_\infty) \leq 0.01$.

For two distributions x, y: $d(x, y) = \sum_i |x_i - y_i|$ (≈ total variation distance)

Captures rate at which $x_t \rightarrow x_\infty$.
Mixing time (formally)

Let x_0, x_1, x_2, \ldots be a Markov chain with stationary distribution x_∞

Definition
The *mixing time* of the Markov chain is the minimum τ such that $d(x_\tau, x_\infty) \leq 0.01$.

For two distributions x, y: $d(x, y) = \sum_i |x_i - y_i|$ (≈ total variation distance)

Captures rate at which $x_t \to x_\infty$.

When we design Markov chains, we would like τ_{mix} to be small. τ_{mix} depends on the connectivity of the Markov chain.
Summary

- random walks on undirected graphs
- Markov chains
- Mixing time: how fast Markov chains converge to stationary distribution