LECTURE 2

LECTURE OUTLINE

• Convex sets and functions
• Epigraphs
• Closed convex functions
• Recognizing convex functions

Reading: Section 1.1
SOME MATH CONVENTIONS

• All of our work is done in \mathbb{R}^n: space of n-tuples $x = (x_1, \ldots, x_n)$

• All vectors are assumed column vectors

• "'" denotes transpose, so we use x' to denote a row vector

• $x'y$ is the inner product $\sum_{i=1}^{n} x_i y_i$ of vectors x and y

• $\|x\| = \sqrt{x'x}$ is the (Euclidean) norm of x. We use this norm almost exclusively

• See Appendix A of the textbook for an overview of the linear algebra and real analysis background that we will use. Particularly the following:

 – Definition of sup and inf of a set of real numbers

 – Convergence of sequences (definitions of lim inf, lim sup of a sequence of real numbers, and definition of lim of a sequence of vectors)

 – Open, closed, and compact sets and their properties

 – Definition and properties of differentiation
A subset C of \mathbb{R}^n is called **convex** if
\[\alpha x + (1 - \alpha)y \in C, \quad \forall x, y \in C, \forall \alpha \in [0, 1] \]

Operations that preserve convexity
- Intersection, scalar multiplication, vector sum, closure, interior, linear transformations

Special convex sets:
- **Polyhedral sets**: Nonempty sets of the form
 \[\{ x \mid a'_j x \leq b_j, \ j = 1, \ldots, r \} \]
 (always convex, closed, not always bounded)
- **Cones**: Sets C such that $\lambda x \in C$ for all $\lambda > 0$ and $x \in C$ (not always convex or closed)
• Let C be a convex subset of \mathbb{R}^n. A function $f : C \mapsto \mathbb{R}$ is called **convex** if for all $\alpha \in [0, 1]$

$$f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y), \quad \forall x, y \in C$$

If the inequality is strict whenever $a \in (0, 1)$ and $x \neq y$, then f is called **strictly convex** over C.

• If f is a convex function, then all its level sets $\{x \in C \mid f(x) \leq \gamma\}$ and $\{x \in C \mid f(x) < \gamma\}$, where γ is a scalar, are convex.
EXTENDED REAL-VALUED FUNCTIONS

- The **epigraph** of a function \(f : X \mapsto [-\infty, \infty] \) is the subset of \(\mathbb{R}^{n+1} \) given by

 \[
 \text{epi}(f) = \{(x, w) \mid x \in X, w \in \mathbb{R}, f(x) \leq w\}
 \]

- The **effective domain** of \(f \) is the set

 \[
 \text{dom}(f) = \{x \in X \mid f(x) < \infty\}
 \]

- We say that \(f \) is **convex** if \(\text{epi}(f) \) is a convex set. If \(f(x) \in \mathbb{R} \) for all \(x \in X \) and \(X \) is convex, the definition “coincides” with the earlier one.

- We say that \(f \) is **closed** if \(\text{epi}(f) \) is a closed set.

- We say that \(f \) is **lower semicontinuous** at a vector \(x \in X \) if \(f(x) \leq \lim \inf_{k \to \infty} f(x_k) \) for every sequence \(\{x_k\} \subset X \) with \(x_k \to x \).
CLOSEDNESS AND SEMICONTINUITY I

- **Proposition**: For a function $f : \mathbb{R}^n \mapsto [-\infty, \infty]$, the following are equivalent:

 (i) $V_\gamma = \{x \mid f(x) \leq \gamma\}$ is closed for all $\gamma \in \mathbb{R}$.
 (ii) f is lower semicontinuous at all $x \in \mathbb{R}^n$.
 (iii) f is closed.

 ![Diagram](image)

- (ii) \Rightarrow (iii): Let $\{(x_k, w_k)\} \subset \text{epi}(f)$ with $(x_k, w_k) \to (\bar{x}, \bar{w})$. Then $f(x_k) \leq w_k$, and

 $$f(\bar{x}) \leq \liminf_{k \to \infty} f(x_k) \leq \bar{w} \quad \text{so} \quad (\bar{x}, \bar{w}) \in \text{epi}(f)$$

- (iii) \Rightarrow (i): Let $\{x_k\} \subset V_\gamma$ and $x_k \to \bar{x}$. Then $(x_k, \gamma) \in \text{epi}(f)$ and $(x_k, \gamma) \to (\bar{x}, \gamma)$, so $(\bar{x}, \gamma) \in \text{epi}(f)$, and $\bar{x} \in V_\gamma$.

- (i) \Rightarrow (ii): If $x_k \to \bar{x}$ and $f(\bar{x}) > \gamma > \liminf_{k \to \infty} f(x_k)$ consider subsequence $\{x_k\}_K \to \bar{x}$ with $f(x_k) \leq \gamma$ - contradicts closedness of V_γ.

CLOSEDNESS AND SEMICONTINUITY II

• Lower semicontinuity of a function is a “domain-specific” property, but closeness is not:
 – If we change the domain of the function without changing its epigraph, its lower semicontinuity properties may be affected.
 – **Example**: Define $f : (0, 1) \to [-\infty, \infty]$ and $\hat{f} : [0, 1] \to [-\infty, \infty]$ by
 \[
 f(x) = 0, \quad \forall x \in (0, 1),
 \]
 \[
 \hat{f}(x) = \begin{cases}
 0 & \text{if } x \in (0, 1), \\
 \infty & \text{if } x = 0 \text{ or } x = 1.
 \end{cases}
 \]

 Then f and \hat{f} have the same epigraph, and both are not closed. But f is lower-semicontinuous at all x of its domain while \hat{f} is not.

• Note that:
 – If f is lower semicontinuous at all $x \in \text{dom}(f)$, it is not necessarily closed
 – If f is closed, $\text{dom}(f)$ is not necessarily closed

• **Proposition**: Let $f : X \mapsto [-\infty, \infty]$ be a function. If $\text{dom}(f)$ is closed and f is lower semicontinuous at all $x \in \text{dom}(f)$, then f is closed.
PROPER AND IMPROPER CONVEX FUNCTIONS

• We say that f is **proper** if $f(x) < \infty$ for at least one $x \in X$ and $f(x) > -\infty$ for all $x \in X$, and we will call f **improper** if it is not proper.

• Note that f is proper if and only if its epigraph is nonempty and does not contain a “vertical line.”

• An improper **closed** convex function is very peculiar: it takes an infinite value (∞ or $-\infty$) at every point.
RECOGNIZING CONVEX FUNCTIONS

- Some important classes of elementary convex functions: Affine functions, positive semidefinite quadratic functions, norm functions, etc.

- **Proposition:** (a) The function \(g : \mathbb{R}^n \mapsto (-\infty, \infty] \) given by

 \[
g(x) = \lambda_1 f_1(x) + \cdots + \lambda_m f_m(x), \quad \lambda_i > 0
 \]

 is convex (or closed) if \(f_1, \ldots, f_m \) are convex (respectively, closed).

(b) The function \(g : \mathbb{R}^n \mapsto (-\infty, \infty] \) given by

\[
g(x) = f(Ax)
\]

where \(A \) is an \(m \times n \) matrix is convex (or closed) if \(f \) is convex (respectively, closed).

(c) Consider \(f_i : \mathbb{R}^n \mapsto (-\infty, \infty], \ i \in I, \) where \(I \) is any index set. The function \(g : \mathbb{R}^n \mapsto (-\infty, \infty] \) given by

\[
g(x) = \sup_{i \in I} f_i(x)
\]

is convex (or closed) if the \(f_i \) are convex (respectively, closed).