LECTURE 6

LECTURE OUTLINE

- Hyperplanes
- Supporting and Separating Hyperplane Theorems
- Strict Separation
- Proper Separation
- Nonvertical Hyperplanes

Reading: Section 1.5
HYPERPLANEs

A hyperplane is a set of the form \(\{x \mid a'x = b\} \), where \(a \) is nonzero vector in \(\mathbb{R}^n \) and \(b \) is a scalar.

We say that two sets \(C_1 \) and \(C_2 \) are separated by a hyperplane \(H = \{x \mid a'x = b\} \) if each lies in a different closed halfspace associated with \(H \), i.e.,

either \(a'x_1 \leq b \leq a'x_2, \forall x_1 \in C_1, \forall x_2 \in C_2, \)

or \(a'x_2 \leq b \leq a'x_1, \forall x_1 \in C_1, \forall x_2 \in C_2 \)

If \(\overline{x} \) belongs to the closure of a set \(C \), a hyperplane that separates \(C \) and the singleton set \(\{\overline{x}\} \) is said be supporting \(C \) at \(\overline{x} \).
• Separating and supporting hyperplanes:

- A separating \(\{ x \mid a' x = b \} \) that is disjoint from \(C_1 \) and \(C_2 \) is called strictly separating:

\[
a' x_1 < b < a' x_2, \quad \forall x_1 \in C_1, \ \forall x_2 \in C_2
\]
SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let \overline{x} be a vector that is not an interior point of C. Then, there exists a hyperplane that passes through \overline{x} and contains C in one of its closed halfspaces.

Proof: Take a sequence $\{x_k\}$ that does not belong to $\text{cl}(C)$ and converges to \overline{x}. Let \hat{x}_k be the projection of x_k on $\text{cl}(C)$. We have for all $x \in \text{cl}(C)$

$$a'_k x \geq a'_k x_k, \quad \forall \ x \in \text{cl}(C), \forall \ k = 0, 1, \ldots,$$

where $a_k = (\hat{x}_k - x_k)/\|\hat{x}_k - x_k\|$. Let a be a limit point of $\{a_k\}$, and take limit as $k \to \infty$. Q.E.D.
SEPARATING HYPERPLANE THEOREM

- Let C_1 and C_2 be two nonempty convex subsets of \mathbb{R}^n. If C_1 and C_2 are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector $a \neq 0$ such that

$$a'x_1 \leq a'x_2, \quad \forall x_1 \in C_1, \forall x_2 \in C_2.$$

Proof: Consider the convex set

$$C_1 - C_2 = \{x_2 - x_1 \mid x_1 \in C_1, x_2 \in C_2\}$$

Since C_1 and C_2 are disjoint, the origin does not belong to $C_1 - C_2$, so by the Supporting Hyperplane Theorem, there exists a vector $a \neq 0$ such that

$$0 \leq a'x, \quad \forall x \in C_1 - C_2,$$

which is equivalent to the desired relation. Q.E.D.
• **Strict Separation Theorem**: Let \(C_1 \) and \(C_2 \) be two disjoint nonempty convex sets. If \(C_1 \) is closed, and \(C_2 \) is compact, there exists a hyperplane that strictly separates them.

![Diagram](image)

Proof: (Outline) Consider the set \(C_1 - C_2 \). Since \(C_1 \) is closed and \(C_2 \) is compact, \(C_1 - C_2 \) is closed. Since \(C_1 \cap C_2 = \emptyset \), \(0 \notin C_1 - C_2 \). Let \(\overline{x}_1 - \overline{x}_2 \) be the projection of 0 onto \(C_1 - C_2 \). The strictly separating hyperplane is constructed as in (b).

• **Note**: Any conditions that guarantee closedness of \(C_1 - C_2 \) guarantee existence of a strictly separating hyperplane. However, there may exist a strictly separating hyperplane without \(C_1 - C_2 \) being closed.
ADDITIONAL THEOREMS

- **Fundamental Characterization**: The closure of the convex hull of a set $C \subset \mathbb{R}^n$ is the intersection of the closed halfspaces that contain C. (Proof uses the strict separation theorem.)

- We say that a hyperplane properly separates C_1 and C_2 if it separates C_1 and C_2 and does not fully contain both C_1 and C_2.

- **Proper Separation Theorem**: Let C_1 and C_2 be two nonempty convex subsets of \mathbb{R}^n. There exists a hyperplane that properly separates C_1 and C_2 if and only if

$$\text{ri}(C_1) \cap \text{ri}(C_2) = \emptyset$$
PROPER POLYHEDRAL SEPARATION

- Recall that two convex sets C and P such that

$$\text{ri}(C) \cap \text{ri}(P) = \emptyset$$

can be properly separated, i.e., by a hyperplane that does not contain both C and P.

- If P is polyhedral and the slightly stronger condition

$$\text{ri}(C) \cap P = \emptyset$$

holds, then the properly separating hyperplane can be chosen so that it does not contain the non-polyhedral set C while it may contain P.

On the left, the separating hyperplane can be chosen so that it does not contain C. On the right where P is not polyhedral, this is not possible.
NONVERTICAL HYPERPLANES

- A hyperplane in \mathbb{R}^{n+1} with normal (μ, β) is nonvertical if $\beta \neq 0$.
- It intersects the $(n+1)$st axis at $\xi = (\mu/\beta)\overline{u} + \overline{w}$, where $(\overline{u}, \overline{w})$ is any vector on the hyperplane.

- A nonvertical hyperplane that contains the epigraph of a function in its “upper” halfspace, provides lower bounds to the function values.
- The epigraph of a proper convex function does not contain a vertical line, so it appears plausible that it is contained in the “upper” halfspace of some nonvertical hyperplane.
• Let C be a nonempty convex subset of \mathbb{R}^{n+1} that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-vertical hyperplane, i.e., there exist $\mu \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ with $\beta \neq 0$, and $\gamma \in \mathbb{R}$ such that $\mu' u + \beta w \geq \gamma$ for all $(u, w) \in C$.

(b) If $(\bar{u}, \bar{w}) \notin \text{cl}(C)$, there exists a nonvertical hyperplane strictly separating (\bar{u}, \bar{w}) and C.

Proof: Note that $\text{cl}(C)$ contains no vert. line [since C contains no vert. line, $\text{ri}(C)$ contains no vert. line, and $\text{ri}(C)$ and $\text{cl}(C)$ have the same recession cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces containing C. If all these corresponded to vertical hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (\bar{u}, \bar{w}) and C. If it is nonvertical, we are done, so assume it is vertical. “Add” to this vertical hyperplane a small ϵ-multiple of a nonvertical hyperplane containing C in one of its halfspaces as per (a).