Geometric Computing: Introduction

Piotr Indyk
Welcome to 6.850!

- Overview and goals
- Course Information
- Closest Pair
Geometric Computing

- Geometric computation occurs everywhere:
 - Robotics: motion planning, map construction and localization
 - Geographic Information Systems (GIS): range search, nearest neighbor
 - Computer graphics: visibility tests for rendering
 - Computer vision: pattern matching
 - Computational drug design: spatial indexing
Computational Geometry

• Started in mid 70’s
• Focused on design and analysis of algorithms for geometric problems
• Many problems well-solved, e.g., Voronoi diagrams, convex hulls
• Many other problems remain open
Course Goals

• Introduction to Computational Geometry
 – Well-established results and techniques
 – New directions
Syllabus

• Part I - Classic CG:
 – Closest pair
 – Segment intersection
 – LP in low dimensions
 – Polygon triangulation
 – Range searching
 – Point location
 – Arrangements and duality
 – Voronoi diagrams
 – Delaunay triangulations
 – Binary space partitions
 – Motion planning and Minkowski sum

Use “Computational Geometry: Algorithms and Applications” by de Berg, van Kreveld, Overmars, Schwarzkopf.
Syllabus ctd.

• Part II - New directions:
 – Closest pair in low dimensions
 – Approximate nearest neighbor in low dimensions
 – Approximate nearest neighbor in high dimensions
 – Low-distortion embeddings
 – Geometric algorithms for external memory
 – Geometric algorithms for streaming data
 – Pattern matching
 – Combinatorial geometry
 – Geometric optimization
 – Conclusions
Course Information

• 3-0-9 H-level Graduate Credit
• Grading:
 – Project
 – 2 problem sets (see calendar):
 – In each PSet:
 • Core component (mandatory): 6.046-style
 • Two optional components:
 – More theoretical problems
 – Java programming assignments
 – Can collaborate, but solutions written separately
 – Midterm but no final 😊
• Prerequisites: understanding of algorithms and probability (6.046 level)
Questions ?
Closest Pair

- Given: a set of points $P = \{p_1 \ldots p_n\}$ in the plane, such that $p_i = (x_i, y_i)$
- Goal: find a pair $p_i \neq p_j$ that minimizes $||p_i - p_j||$
- Easy to do in $O(n^2)$ time
 - For all $p_i \neq p_j$, compute $||p_i - p_j||$ and choose the minimum
- We will aim for $O(n \log n)$ time

$||p-q|| = [(p_x-q_x)^2 + (p_y-q_y)^2]^{1/2}$
Divide and conquer

• Divide:
 – Compute the median of x-coordinates
 – Split the points into P_L and P_R, each of size $n/2$
• Conquer: compute the closest pairs for P_L and P_R
• Combine the results (the hard part)
Combine

• Let \(d = \min(d_1,d_2) \)
• Observe:
 – Need to check only pairs which cross the dividing line
 – Only interested in pairs within distance \(< d\)
• Suffices to look at points in the \(2d\)-width strip around the median line
Scanning the strip

- Sort all points in the strip by their y-coordinates, forming \(q_1 \ldots q_k, \ k \leq n \).
- Let \(y_i \) be the y-coordinate of \(q_i \).
- \(d_{\text{min}} = d \).
- For \(i=1 \) to \(k \)
 - \(j=i-1 \)
 - While \(y_i - y_j < d \)
 - If \(||q_i - q_j|| < d_{\text{min}} \) then \(d_{\text{min}} = ||q_i - q_j|| \)
 - \(j:=j-1 \)
- Report \(d_{\text{min}} \) (and the corresponding pair)
Analysis

- Correctness: easy
- Running time is more involved
- Can we have many q_i’s that are within distance d from q_i?
 - No
- Proof by packing argument
Theorem: there are at most 7 q_j's such that $y_i - y_j \leq d$.

Proof:

- Each such q_j must lie either in the left or in the right $d \times d$ square.
- Within each square, all points have distance distance $\geq d$ from others.
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i).
Packing bound

- Split into 4 disjoint sub-squares
- Each square has diameter $< d$
- At most 1 point per sub-square
Running time

- **Divide:** $O(n)$
- **Combine:** $O(n \log n)$ because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points
 Then combine takes only $O(n)$
- We get $T(n) = 2T(n/2) + O(n)$, so
 $T(n) = O(n \log n)$