Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

• Given a set of n points, build a data structure that for any query rectangle R, reports all points in R.
Kd-trees [Bentley]

- Not the most efficient solution in theory
- Everyone uses it in practice
- Algorithm:
 - Choose x or y coordinate (alternate)
 - Choose the median of the coordinate; this defines a horizontal or vertical line
 - Recurse on both sides
- We get a binary tree:
 - Size: $O(N)$
 - Depth: $O(\log N)$
 - Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node \(v \) corresponds to a region \(\text{Reg}(v) \).
Kd-tree: Range Queries

1. Recursive procedure, starting from $v=\text{root}$

2. Search (v,R):
 a) If v is a leaf, then report the point stored in v if it lies in R
 b) Otherwise, if $\text{Reg}(v)$ is contained in R, report all points in the subtree of v
 c) Otherwise:
 • If $\text{Reg(left}(v))$ intersects R, then Search(left$(v),R)$
 • If $\text{Reg(right}(v))$ intersects R, then Search(right$(v),R)$
Query demo
Query Time Analysis

• We will show that Search takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points
 – The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$
 – We just need to bound the number of nodes v such that $\text{Reg}(v)$ intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of $\text{Reg}(v)$
 – Will make a gross overestimation: will bound the number of $\text{Reg}(v)$ which are crossed by any of the 4 horizontal/vertical lines
Query Time Continued

• What is the max number $Q(n)$ of regions in an n-point kd-tree intersecting (say, vertical) line?
 – If we split on x, $Q(n) = 1 + Q(n/2)$
 – If we split on y, $Q(n) = 1 + 2Q(n/2)$
 – Since we alternate, we can write $Q(n) = 2 + 2Q(n/4)$

• This solves to $O(n^{1/2})$
A Faster Solution

• Query time: $O(\log^2 n + P)$
• Space: $O(n \log n)$
Idea I: Only ranks matter

• Sort x and y coordinates of input points
• For a rectangle $R=[x_1,x_2] \times [y_1,y_2]$, we have point $(u,v) \in R$ iff
 – $\text{rank}(\text{succ}_x(x_1)) \leq \text{rank}_x(u) \leq \text{rank}(\text{pred}_x(x_2))$
 – $\text{rank}(\text{succ}_y(y_1)) \leq \text{rank}_y(v) \leq \text{rank}(\text{pred}_y(y_2))$
• Thus we can replace
 – Point coordinates by their rank
 – Query boundaries by succ/pred; this adds $O(\log n)$ to the query time
Dyadic intervals

• Assume n is a power of 2. Dyadic intervals are:
 – $[1,1]$, $[2,2]$... $[n,n]
 – $[1,2]$, $[3,4]$... $[n-1,n]
 – $[1,4]$, $[5,8]$... $[n-3,n]
 –
 – $[1...n]

• Any interval $\{a...b\}$ can be decomposed into $O(\log n)$ dyadic intervals:
 – Imagine a full binary tree over $\{1...n\}$
 – Each node corresponds to a dyadic interval
 – Any interval $\{a...b\}$ can be “covered” using $O(\log n)$ sub-trees
Detailed recipe of the decomposition

• Let A be a path from a to the root and B be the path from b to the root
• Let v be the node where A and B diverge, i.e., the lowest node v that belongs to both A and B. Note that left(v) is in A, while right(v) is in B
 – Note that v could be the root
• Let A’ be the path v…a, and B’ be the path v…b
• Create the decomposition
 – Include a and b
 – For each node u in A’:
 • If u is a left child of its parent, include its sibling
 – For each node u in B’:
 • If u is a right child of its parent, include its sibling
• Note that the above decomposition might not have the minimum size, but it has size $O(\log n)$
Range Trees

• For each level $l=1\ldots \log n$, partition x-ranks using level-l dyadic intervals
• This induces vertical strips
• Within each strip, construct a balanced BST on y-coordinates
Range Trees
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Query procedure

- Consider query $R = X \times Y$
- Partition X into dyadic intervals
- For each interval, query the corresponding strip BST using Y
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n + P)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem