Range Processing Pipeline

Wojciech Matusik
CSAIL & EECS MIT

Slides from Szymon Rusinkiewicz, Hugues Hoppe, Greg Turk, Brian Curless
Range Processing Pipeline

- **Overview**
 - Range image acquisition
 - View planning
 - Scan registration
 - Pairwise registration
 - Global registration
 - Surface reconstruction
 - Merging all scans into one surface
Range Processing Pipeline

• Overview
 - Range image acquisition
 • View planning
 - Scan registration
 • Pairwise registration
 • Global registration
 - Surface reconstruction
 • Merging all scans into one surface
Range Processing Pipeline

- **Overview**
 - Range image acquisition
 - View planning
 - **Scan registration**
 - Pairwise registration
 - Global registration
 - **Surface reconstruction**
 - Merging all scans into one surface
Range Processing Pipeline

• Overview
 - Range image acquisition
 • View planning
 - Scan registration
 • Pairwise registration
 • Global registration
 - Surface reconstruction
 • Merging all scans into one surface
The Plan

• Scan Registration
 - Pairwise Rigid Registration
 - Global Registration

• Surface Reconstruction
Pairwise Rigid Registration Goal

- Align two partially-overlapping meshes given initial guess for relative transform
Aligning 3D Data

• If correct correspondences are known, can find correct relative rotation/translation
Aligning 3D Data

- How to find correspondences: User input? Feature detection? Signatures?
- Alternative: assume closest points correspond
Aligning 3D Data

- ... and iterate to find alignment
 - Iterative Closest Points (ICP) [Besl & McKay 92]
- Converges if starting position “close enough“
Basic ICP

- **Select** e.g. 1000 random points
- **Match** each to closest point on other scan, using data structure such as *k*-d tree
- **Reject** pairs with distance > *k* times median
- **Construct** error function:
 \[E = \sum \left|R p_i + t - q_i\right|^2 \]
- **Minimize** (closed form solution in [Horn 87])
ICP Variants

- Variants on the following stages of ICP have been proposed:
 1. Selecting source points (from one or both meshes)
 2. Matching to points in the other mesh
 3. Weighting the correspondences
 4. Rejecting certain (outlier) point pairs
 5. Assigning an error metric to the current transform
 6. Minimizing the error metric w.r.t. transformation
• Can analyze various aspects of performance:
 - Speed
 - Stability
 - Tolerance of noise and/or outliers
 - Maximum initial misalignment

• Comparisons of many variants in
 [Rusinkiewicz & Levoy, 3DIM 2001]
ICP Variants

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation
Point-to-Plane Error Metric

- Using point-to-plane distance instead of point-to-point lets flat regions slide along each other

[Chen & Medioni 91]
ICP Variants

1. Selecting source points (from one or both meshes)
2. **Matching** to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation
Closest Compatible Point

- Closest point often a bad approximation to corresponding point
- Can improve matching effectiveness by restricting match to compatible points
 - Compatibility of colors [Godin et al. 94]
 - Compatibility of normals [Pulli 99]
 - Other possibilities: curvatures, higher-order derivatives, and other local features
ICP Variants

1. **Selecting** source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation
Selecting Source Points

- Use all points
- Uniform subsampling
- Random sampling
- **Stable sampling** [Gelfand et al. 2003]
 - Select samples that constrain all degrees of freedom of the rigid-body transformation
Stable Sampling

Uniform Sampling Stable Sampling
Sliding Directions

- Eigenvectors of C with small eigenvalues correspond to sliding transformations.

3 small eigenvalues
2 translation
1 rotation

3 small eigenvalues
3 rotation

2 small eigenvalues
1 translation
1 rotation

1 small eigenvalue
1 rotation

1 small eigenvalue
1 translation

[Gelfand]
The Plan

- Scan Registration
 - Pairwise Rigid Registration
 - Global Registration
- Surface Reconstruction
Global Registration Goal

- Given: n scans around an object
- Goal: align them all
- First attempt: ICP each scan to one other
Global Registration Goal

- Want method for distributing accumulated error among all scans
Approach #1: Avoid the Problem

- In some cases have 1 scan that covers large part of surface (e.g., cylindrical scan)
- Align all other scans to this “anchor”
- Disadvantage: not always practical to obtain anchor scan
Approach #2: The Greedy Solution

• Align each new scan to the union of all previous scans [Masuda 96]

• Disadvantages:
 - Order dependent
 - Doesn’t spread out error
Approach #3: The Brute-Force Solution

- While not converged:
 - For each scan:
 - For each point:
 - For every other scan
 » Find closest point
 - Minimize error w.r.t. transforms of all scans

- Disadvantage:
 - Solve $(6n) \times (6n)$ matrix equation, where n is number of scans
Approach #3a: Slightly Less Brute-Force

• While not converged:
 - For each scan:
 • For each point:
 - For every other scan
 » Find closest point
 • Minimize error w.r.t. transform of this scan

• Faster than previous method (matrices are 6×6)
 [Bergevin 96, Benjemaa 97]
Graph Methods

- Many global registration algorithms create a graph of **pairwise alignments** between scans
 - Compute pairwise alignments for all graph edges
 - Solve for a set of global transformations as consistent as possible with all pairwise alignments
Bad ICP in Globalreg

- One bad ICP can throw off the entire model!
The Plan

• Scan Registration
 - Pairwise Rigid Registration
 - Global Registration

• Surface Reconstruction
Surface Reconstruction

- Generate a mesh from a set of surface samples
Challenges for Surface Reconstruction

- Even, noiseless sampling
- Noisy sampling: interpolation
- Noisy sampling: estimation
- Thin surfaces
- Uneven sampling
- Small features and topology
- Gap?
Computational geometry approaches figure out how to connect up “nearby” points.

- Need sufficiently dense sampling, little noise.
- Delaunay triangulation: connect nearest points.
Surface Reconstruction From Range Images

- Often an easier problem than reconstruction from arbitrary point clouds
 - Implicit information about adjacency, connectivity
 - Roughly uniform spacing
- Algorithm
 - Construct surface from each range image
 - Merge resulting surfaces
 - Obtain average surface in overlapping regions
 - Control point density
Step 1: From Range Images to Range Surfaces

- Given a range image, connect up the neighbors
To avoid “prematurely aggressive” reconstruction, a tessellation threshold should be employed.
Range Image Tessellation

• Which way to triangulate?

- Shorter diagonal
- Dihedral angle closer to 180°
- Maximize smallest angle in both triangles
- Always the same way (best triangle strips)
Step 2: Scan Merging

- Zippering, Turk & Levoy, 1994
- Erode geometry in overlapping areas
- Stitch scans together along seam
- Re-introduce all data
 - Weighted average
Zippering

Overlapping range surfaces

Redundant geometry removed

thickened boundary

Mesh boundary "thickened" for clipping

Zippered surface
Point Weighting

• Higher weights to points facing the camera
 - Favor higher sampling rates
Point Weighting

- Lower weights (tapering to 0) near boundaries
 - Smooth blends between views
Point Weighting
Consensus Geometry

Zippered geometry + range surfaces

Compute consensus normal

Find vertex positions on range surfaces by intersection with consensus normal

Compute weighted average of vertex positions
Zippering Example
Zippering Example
Problems with Zippering

Drill Bit

Zippered reconstruction
Implicit Function Approaches

- Define a function with value less than zero outside the model and greater than zero inside
Implicit Function Approaches

- Define a function with value less than zero outside the model and greater than zero inside

- Extract the zero-set
Volumetric Range Image Processing (VRIP)

- Curless & Levoy, 1996

Algorithm:
- Generate signed distance function for each scan
- Compute average (possibly weighted)
- Extract isosurface (using marching cubes)
Volumetric Range Image Processing (VRIP)

- Defined on fixed volumetric grid
- Implicit functions = ramps along line of sight to scanner
- Weighting along ramps

- Weighting across surface (similar to Zipper)
Marching Cubes

- Lorensen & Cline, 1987
- Consider 2D analogy: “marching squares”
- Look at signs at corners of square
Marching Cubes

• Signs of corners → lookup table → polygons

• Actual values at corners: locations of vertices along edges of square / cube

• Sometimes ambiguous
Marching Cubes

- Same idea can be scaled up to 3D
Space Carving in VRIP

- Mark all space between surface and scanner as “outside” (with low weight)
- Extract additional isosurfaces between “outside” and “unseen”
Space Carving in VRIP
Space Carving in VRIP
Microsoft Kinect Fusion (ICP and VRIP)

SIGGRAPH Talks 2011
KinectFusion: Real-Time Dynamic 3D Surface Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1, David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1, Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London 3 Newcastle University 4 Lancaster University 5 University of Toronto
Poisson Surface Reconstruction

• Khazdan et al. 2006

• Theoretical Insights:
 - Relate oriented point samples to indicator gradient
 - Express reconstruction as a Poisson problem

• Empirical Advantages:
 - Is robust to noise
 - Adapts to the sampling density
 - Can handle large models
The Indicator Function

- Reconstruct the surface of the model by solving for the indicator function of the shape.

\[\chi_M(p) = \begin{cases}
1 & \text{if } p \in M \\
0 & \text{if } p \notin M
\end{cases} \]
Challenge

- How to construct the indicator function?

Oriented points \vec{V} → Indicator function χ_M
There is a relationship between the normal field and gradient of indicator function.

- Oriented points \(\vec{V} \)
- Indicator gradient \(\nabla \chi_M \)
Integration

- Represent the points by a vector field
- Find the function χ whose gradient best approximates \vec{V}:

$$\min_{\chi} \| \nabla \chi - \vec{V} \|$$
Integration as a Poisson Problem

- Represent the points by a vector field
- Find the function χ whose gradient best approximates \vec{V}:
 \[
 \min_{\chi} \| \nabla \chi - \vec{V} \|
 \]

- Applying the divergence operator, we can transform this into a Poisson problem:
 \[
 \nabla \cdot (\nabla \chi) = \nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi = \nabla \cdot \vec{V}
 \]
Implementation

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface
Implementation: Adapted Octree

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function basis
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function basis
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface
Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface
Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface
Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface
Implementation: Surface Extraction

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface
Michelangelo’s David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Compute Time: 2.1 hours
- Peak Memory: 6600MB
David - Chisel Marks
David - Drill Marks
David - Eye
VRIP Comparison

VRIP

Poisson
That’s All for Today

• Further Readings:
 - “Efficient Variants of the ICP Algorithm”, Szymon Rusinkiewicz and Marc Levoy
 • http://www.cs.princeton.edu/~smr/papers/fasticp/
 - “Zippered Polygon Meshes from Range Images”, Greg Turk and Marc Levoy
 • http://graphics.stanford.edu/papers/zipper/
 - “A Volumetric Method for Building Complex Models from Range Images“, Brian Curless and Marc Levoy
 • http://www-graphics.stanford.edu/papers/volrange/
 - “Poisson Surface Reconstruction”, Kazhdan et al.
 • http://www.cs.jhu.edu/~misha/MyPapers/SGP06.pdf