Fabricating Articulated Characters from Skinned Meshes

6.S079 Computational Fabrication
Wojciech Matusik
CSAIL & EECS MIT
The Plan for Today

• Linear Blend Skinning Review

• Fabricating Articulated Characters from Skinned Meshes
 Bächer et al., Siggraph 2012
Skinning

- We know how to animate a bone hierarchy
 - Change the joint angles, i.e., bone transformations, over time (keyframing)
Skinning

• We know how to animate a bone hierarchy
 – Change the joint angles, i.e., bone transformations, over time (keyframing)
• Embed a skeleton into a detailed character mesh
• Bind skin vertices to bones
 – Animate skeleton, skin will move with it
 – But how?
Skinning/Enveloping

• Need to infer how skin deforms from bone transformations.

• Most popular technique: Skeletal Subspace Deformation (SSD), or simply Skinning
 - Other aliases
 • vertex blending
 • matrix palette skinning
 • linear blend skinning
Each bone has a deformation of the space around it (rotation, translation)
SSD / Skinning

- Each bone has a deformation of the space around it (rotation, translation)
 - What if we attach each vertex of the skin to a single bone?
SSD / Skinning

• Each bone has a deformation of the space around it (rotation, translation)
 – What if we attach each vertex of the skin to a single bone?
 • Skin will be rigid, except at joints where it will stretch badly
SSD / Skinning

- Each bone has a deformation of the space around it (rotation, translation)
 - What if we attach each vertex of the skin to a single bone?
 - Skin will be rigid, except at joints where it will stretch badly
 - Let’s attach a vertex to many bones at once!
 - In the middle of a limb, the skin points follow the bone rotation (near-rigidly)
 - At a joint, skin is deformed according to a “weighted combination” of the bones
Examples

Colored triangles are attached to 1 bone
Black triangles are attached to more than 1

Note how they are near joints

James & Twigg 2005
Examples

Colored triangles are attached to 1 bone
Black triangles are attached to more than 1

Note how they are near joints

James & Twigg 2005
Vertex Weights

• We’ll assign a weight w_{ij} for each vertex p_i for each bone B_j.
 – “How much vertex i should move with bone j”
 – $w_{ij} = 1$ means p_i is rigidly attached to bone j.
Vertex Weights

• We’ll assign a weight w_{ij} for each vertex p_i for each bone B_j.
 – “How much vertex i should move with bone j”
 – $w_{ij} = 1$ means p_i is rigidly attached to bone j.

Wang & Phillips 2002
Vertex Weights

• We’ll assign a weight w_{ij} for each vertex p_i for each bone B_j.
 – “How much vertex i should move with bone j”
 – $w_{ij} = 1$ means p_i is rigidly attached to bone j.

• Weight properties
 – Usually want weights to be non-negative
Vertex Weights

• We’ll assign a weight w_{ij} for each vertex p_i for each bone B_j.
 - “How much vertex i should move with bone j”
 - $w_{ij} = 1$ means p_i is rigidly attached to bone j.

• Weight properties
 - Usually want weights to be non-negative
 - Also, want the sum over all bones to be 1 for each vertex
How to compute vertex positions?
Linear Blend Skinning

- **Basic Idea 1:** Transform each vertex p_i with each bone as if it was tied to it rigidly.
Linear Blend Skinning

- **Basic Idea 1**: Transform each vertex p_i with each bone as if it was tied to it rigidly.
- **Basic Idea 2**: Then blend the results using the weights.
Computing Vertex Positions

- **Basic Idea 1**: Transform each vertex p_i with each bone as if it was tied to it rigidly.
- **Basic Idea 2**: Then blend the results using the weights.

\[
p'_{ij} = T_j p_i
\]

\[
p'_i = \sum_j w_{ij} p'_{ij}
\]

p'_{ij} is the vertex i transformed using bone j.
T_j is the current transformation of bone j.
p'_i is the new skinned position of vertex i.
Computing Vertex Positions

Rest ("bind") pose

Bone 1: T_1

Vertex p_0 has weights $w_{01}=0.5$, $w_{02}=0.5$

Bone 2: T_2

"Skin"
Computing Vertex Positions

- Vertex p_0 has weights $w_{01}=0.5$, $w_{02}=0.5$
- Transform by T'_1 and T'_2 yields p'_{01}, p'_{02}
Computing Vertex Positions

Rest ("bind") pose

Bone 1: T_1
Bone 2: T_2

\bullet Vertex p_0 has weights $w_{01}=0.5$, $w_{02}=0.5$

\bullet Transform by T'_1 and T'_2 yields p'_{01}, p'_{02}

\bullet the new position is $p'_0 = 0.5*p'_1 + 0.5*p'_2$

"Skin"
Vertex p_0 has weights $w_{01}=0.5$, $w_{02}=0.5$

Transform by T'_1 and T'_2 yields p'_{01}, p'_{02}

the new position is $p'_0 = 0.5*p'_1 + 0.5*p'_2$

Rest ("bind") pose

Bone 1: T_1
Bone 2: T_2

After rotations

Bone 1: T'_1
Bone 2: T'_2

"Skin"
SSD is Not Perfect

After rotations
The Plan for Today

• Linear Blend Skinning Review

• Fabricating Articulated Characters from Skinned Meshes
 Bächer et al., Siggraph 2012
Motivation

Animation software

[Maya, Autodesk]
Motivation

Animation software

[Maya, Autodesk]

3D printer

[OBJET]
The Approach
Challenges

• Rig joints
 - non-physical points

• Mechanical joints
 - volumetric entities
 - avoid overlaps between them
Challenges

• Rig joints
 - non-physical points

• Mechanical joints
 - volumetric entities
 - avoid overlaps between them
Overview

Input

Geometry

Articulation

Output
Overview

Input
Geometry
Articulation

Output
Fab. Mesh
Overview

Input
- Geometry
- Articulation

Output

Fab. Mesh

Segmentation
Overview

Input
- Geometry
- Articulation

Output

Geometry

Fab. Mesh

Joint Estimation

Joint Optimization

Segmentation
Overview

Input
- Geometry
- Articulation

Fabricated Mesh
- Joint Estimation
- Joint Optimization
- Segmentation
- Joint Carving

Output
Overview

Input
- Geometry
- Articulation

Joint Estimation

Output

Joint Optimization

Joint Carving

Segmentation
Overview

Input
- Geometry
- Articulation

Output

Joint Optimization
Joint Carving

Segmentation

Joint Estimation

Fabric Mesh
Skinned Character
Skinned Character

- Geometry
Skinned Character

- Geometry
Skinned Character

• Geometry
Skinned Character

• Geometry

• Articulation (LBS)

\[\mathbf{v}_i' = \sum_l w_{il} \mathbf{T}_l \mathbf{v}_i \]
Skinned Character

- Geometry
- Articulation (LBS)

\[\mathbf{v}'_i = \sum_l w_{il} \mathbf{T}_l \mathbf{v}_i \]
Skinned Character

- Geometry
- Articulation (LBS)

\[\mathbf{v}'_i = \sum_l w_{il} T_l \mathbf{v}_i \]
Skinned Character

- Geometry
- Articulation (LBS)

\[\mathbf{v}_i' = \sum_l w_{il} \mathbf{T}_l \mathbf{v}_i \]
Skinned Character

- Geometry
- Articulation (LBS)

\[\mathbf{v}'_i = \sum_l w_{il} \mathbf{T}_l \mathbf{v}_i \]
Skinned Character

• Geometry

• Articulation (LBS)

\[\mathbf{v}'_i = \sum_{l} w_{il} \mathbf{T}_l \mathbf{v}_i \]

• Appearance
 - Diffuse texture
 - Normal map

[Nehab et al. 2005]
Overview

Input
- Geometry
- Articulation

Output
- Joint Optimization
- Joint Carving

Process:
1. Fab. Mesh
2. Joint Estimation
3. Joint Carving

Segmentation
Overview

Input
- Geometry
- Articulation

Output

1. Fab. Mesh
2. Joint Optimization
3. Joint Carving
4. Joint Estimation
5. Segmentation

Overview of the process:
- Geometry and articulation are inputs.
- Fab. mesh is generated.
- Joint optimization is applied.
- Joint carving follows.
- Joint estimation is performed.
- Segmentation is done.
- The output is shown.
Estimating Rigid Parts
Estimating Rigid Parts

\[\hat{l} = \arg \max_l w_{il} \]
Estimating Rigid Parts
Estimating Rigid Parts
Estimating Transitions
Estimating Transitions
Estimating Transitions

transition edges
Estimating Transitions

transition edges
Estimating Transitions

\[\omega_{j, \hat{t}_j} \quad v_j \quad \omega_{k, \hat{t}_k} \quad P_{jk} \quad v_k \]

transition point
Estimating Transitions

\[p_{jk} = \frac{w_{j,k} + w_{k,\hat{k}}}{w_{j,k} + w_{k,\hat{k}}} v_j + \frac{w_{j,k} + w_{k,\hat{k}}}{w_{j,k} + w_{k,\hat{k}}} v_k \]
Estimating Transitions
Estimating Transitions
Estimating Transitions

Principal Component Analysis (PCA)
Estimating Transitions

\[\bar{n} = \pm e_3 \]
Estimating Transitions

parent

child

\(p\)

\(n\)
Estimating Transitions

parent

child
Estimating Transitions
Estimating Transitions

parent → child

μ

μ
Estimating Rigid Parts
Overview

Input
- Geometry
- Articulation

Output
- Joint Optimization
- Joint Carving

Intermediate Steps:
- Fab. Mesh
- Segmentation
- Joint Estimation
Overview

Input
- Geometry
- Articulation

Output
- Joint Optimization
- Joint Carving

Joint Estimation

Fab. Mesh

Segmentation
Filtering Transitions
Filtering Transitions
Filtering Transitions
Filtering Transitions

degenerate
Filtering Transitions

\[(\lambda_1, e_1) \]

\[(\lambda_2, e_2) \]

degenerate

\[\lambda_1 > f \lambda_2 \]
Filtering Transitions
Placing Joint Centers
Medial Axis
Medial Axis

[Miklos et al. 2010]
Placing Joint Centers

[Blum 1967]

[Miklos et al. 2010]
Placing Joint Centers

[Blum 1967]

[Miklos et al. 2010]
Placing Joint Centers

[Blum 1967]

[Blum et al. 2010]
Placing Joint Centers

[Miklos et al. 2010]
Oriented Joint Locations
Overview

Input
- Geometry
- Articulation

Joint Estimation
- Fab. Mesh

Joint Optimization
- Segmentation

Joint Carving
- Output

Segmentation
- Joint Optimization

Joint Estimation
- Output
Overview

Input

Geometry

Articulation

Output

Fab. Mesh

Joint Optimization

Joint Carving

Segmentation

Joint Estimation
Manufacturing

• Additive manufacturing
Manufacturing

• Additive manufacturing
Manufacturing

- Additive manufacturing
 - build vs. support material
Manufacturing

- Additive manufacturing
 - build vs. support material
Manufacturing

- Additive manufacturing
 - build vs. support material
Manufacturing

• Additive manufacturing
 - build vs. support material
 - minimal distance d
Manufacturing

• Additive manufacturing
 - build vs. support material
 - minimal distance d
Manufacturing

- Additive manufacturing
 - build vs. support material
 - minimal distance d
Manufacturing

- Additive manufacturing
 - build vs. support material
 - minimal distance d

- Structural stability
 - identify & adjust weakest link
Manufacturing

- Additive manufacturing
 - build vs. support material
 - minimal distance d

- Structural stability
 - identify & adjust weakest link
 - critical area A_{min}
Manufacturing

- Additive manufacturing
 - build vs. support material
 - minimal distance d

- Structural stability
 - identify & adjust weakest link
 - critical area A_{min}
Ball and Socket Joint
Ball and Socket Joint
Ball and Socket Joint
Ball and Socket Joint

\[A_1(r, h) \]
\[A_2(r, h) \]
\[A_3(r, h) \]
Ball and Socket Joint

$A_1(r, h)$

$A_2(r, h)$

$A_3(r, h)$
Ball and Socket Joint

$A_1(r, h)$

$A_2(r, h)$

$A_3(r, h)$
Ball and Socket Joint

$A_1(r, h)$

$A_2(r, h)$

$A_3(r, h)$

$max_{r, h} \ min_{i \in \{1, 2, 3\}} A_i(r, h)$
Ball and Socket Joint

\[
\max_{r,h} \min_{i \in \{1,2,3\}} A_i(r, h)
\]
Ball and Socket Joint
Ball and Socket Joint

opening angle $\phi(\theta)$

θ
Ball and Socket Joint

opening angle $\phi(\theta)$

$A_1(r, h)$

$A_2(r, h)$

$A_3(r, h)$

$$\max_{r, h} \min_{i \in \{1, 2, 3\}} A_i(r, h)$$
Ball and Socket Joint

Opening angle $\phi(\theta)$

$A_1(r, h)$ $A_2(r, h)$ $A_3(r, h)$

$$\max_{r, h} \min_{i \in \{1, 2, 3\}} A_i(r, h)$$
Hinge Joint
Hinge Joint
Hinge Joint

γ_b γ_f

swing angles
Hinge Joint

\[\gamma_b \quad \gamma_f \]

swing angles
Estimating Mechanical Joints

• Automation
 - default: ball-and-socket joint
 - globally constant opening angle: $\phi(\theta) = \alpha$

• User Intervention
 - switch default to hinge
 - specify ranges
Estimating Mechanical Joints
Resolving Collisions

- non-colliding
- colliding
Resolving Collisions

\[t = t_0 \]

- non-colliding
- colliding

stack

- \(C^t_3 \)
- \(C^t_2 \)
- \(C^t_1 \)
- \(C^t_0 \)
Resolving Collisions

\[t = t_0 \]
Resolving Collisions

- non-colliding
- colliding
Resolving Collisions

\[t = t_1 \]

- non-colliding
- colliding

stack

\[C^{t_3} \]
\[C^{t_2} \]
\[C^{t_1} \]
\[C^{t_0} \]
Resolving Collisions

- non-colliding
- colliding
Resolving Collisions

\[t = t_2 \]

- non-colliding
- colliding

stack

\[
\begin{array}{c}
C^t_0 \\
C^t_1 \\
C^t_2 \\
C^t_3 \\
\end{array}
\]
Resolving Collisions

$t = t_2$

- non-colliding
- colliding

stack

<table>
<thead>
<tr>
<th>C_{3,2}^t</th>
<th>C_{3,1}^t</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2^t</td>
<td>C_1^t</td>
</tr>
<tr>
<td>C_0^t</td>
<td></td>
</tr>
</tbody>
</table>

group split
Resolving Collisions

- non-colliding
- colliding
Resolving Collisions

$t = t_3$

- non-colliding
- colliding

stack

C^t_2
C^t_1
C^t_0
Resolving Collisions

- non-colliding
- colliding
Resolving Collisions

\[t = t_4 \]

- non-colliding
- colliding

stack

outside collision
Resolving Collisions
Resolving Collisions
Resolving Collisions

infeasible joint
Resolving Collisions

exclusion
Resolving Collisions

group reset
Resolving Collisions
Resolving Collisions
Overview

Input
- Geometry
- Articulation

Output
- Joint Carving

Segmentation
Joint Estimation
Joint Optimization
Fab. Mesh

Joint Estimation - Joint Carving = Joint Optimization
Joint Carving
Joint Carving
Joint Carving
Results
Results
More Results
More Results
Summary

- Skinned meshes to toy characters
 - 3D print button

- Mechanical Joint Placement
 - non-physical rig joints
 - rigid body parts from skinning weights

- Mechanical Joint Optimization
 - geometric models of joint strength
 - collision handling

3D Print
Another Related Project [Cali et al., Siggraph Asia 2012]
That’s All for Today