Lecture 6

Additional Methods

February 26, 2015

Massachusetts Institute of Technology
Lecture Outline

• Least-Squares Problems and Incremental Gradient Methods
• Conjugate Direction Methods
• The Conjugate Gradient Method
• Quasi-Newton Methods
• Coordinate Descent Methods

Recall the least-squares problem:

\[
\begin{align*}
\text{minimize} & \quad f(x) = \frac{1}{2} \|g(x)\|^2 = \frac{1}{2} \sum_{i=1}^{m} \|g_i(x)\|^2 \\
\text{subject to} & \quad x \in \mathbb{R}^n,
\end{align*}
\]

where \(g = (g_1, \ldots, g_m), \ g_i : \mathbb{R}^n \to \mathbb{R}^{r_i}. \)
Incremental Gradient Methods

• Steepest descent method

\[x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \sum_{i=1}^{m} \nabla g_i(x^k) g_i(x^k) \]

• Incremental gradient method:

\[\psi_i = \psi_{i-1} - \alpha^k \nabla g_i(\psi_{i-1}) g_i(\psi_{i-1}), \quad i = 1, \ldots, m \]

\[\psi_0 = x^k, \quad x^{k+1} = \psi_m \]
Figure 1: Advantage of incrementalism
View as Gradient Method w/ Errors

- Can write incremental gradient method as

\[x^{k+1} = x^k - \alpha^k \sum_{i=1}^{m} \nabla g_i(x^k)g_i(x^k) \]

\[+ \alpha^k \sum_{i=1}^{m} (\nabla g_i(x^k)g_i(x^k) - \nabla g_i(\psi_{i-1})g_i(\psi_{i-1})) \]

- Error term is proportional to stepsize \(\alpha^k \)

- Convergence (generically) for a diminishing stepsize (under a Lipschitz condition on \(\nabla g_i g_i \))

- Convergence to a “neighborhood” for a constant stepsize
Conjugate Direction Methods

• Aim to improve convergence rate of steepest descent, without the overhead of Newton’s method.

• Analyzed for a quadratic model. They require \(n \) iterations to minimize

\[
f(x) = \frac{1}{2}x'Qx - b'x
\]

with \(Q \) an \(n \times n \) positive definite matrix \(Q \succ 0 \).

• Analysis also applies to nonquadratic problems in the neighborhood of a nonsingular local min.

• The directions \(d^1, \ldots, d^k \) are \(Q \)-conjugate if

\[
d^i'Qd^j = 0 \quad \text{for all} \quad i \neq j.
\]

• Generic conjugate direction method:

\[
x^{k+1} = x^k + \alpha^k d^k
\]

where \(\alpha^k \) is obtained by line minimization.
Figure 2: Expanding Subspace Theorem
Generating Q-Conjugate Directions

- Given set of linearly independent vectors ξ^0, \ldots, ξ^k, we can construct a set of Q-conjugate directions d^0, \ldots, d^k s.t. $Span(d^0, \ldots, d^i) = Span(\xi^0, \ldots, \xi^i)$

- Gram-Schmidt procedure. Start with $d^0 = \xi^0$. If for some $i < k$, d^0, \ldots, d^i are Q-conjugate and the above property holds, take

 $$d^{i+1} = \xi^{i+1} + \sum_{m=0}^{i} c^{(i+1)m} d^m;$$

 choose $c^{(i+1)m}$ so d^{i+1} is Q-conjugate to d^0, \ldots, d^i,

 $$d^{i+1}' Q d^j = \xi^{i+1}' Q d^j + \left(\sum_{m=0}^{i} c^{(i+1)m} d^m \right)' Q d^j = 0.$$
\[d^1 = x^1 + c^{10}d^0 \]

\[d^2 = x^2 + c^{20}d^0 + c^{21}d^1 \]
Conjugate Gradient Method

- Apply Gram-Schmidt to the vectors $\xi^k = -g^k = -\nabla f(x^k)$, $k = 0, 1, \ldots, n - 1$. Then

$$d^k = -g^k + \sum_{j=0}^{k-1} \frac{g^k Q d^j}{d^j Q d^j} d^j$$

- **Key fact:** Direction formula can be simplified.

- **Proposition:** The directions of the CGM are generated by $d^0 = -g^0$, and

$$d^k = -g^k + \beta^k d^{k-1}, \quad k = 1, \ldots, n - 1,$$

where β^k is given by

$$\beta^k = \frac{g^k g_k}{g^{k-1} g_{k-1}} \quad \text{or} \quad \beta^k = \frac{(g^k - g^{k-1})' g^k}{g^{k-1} g_{k-1}}$$

Furthermore, the method terminates with an optimal solution after at most n steps.

- Extension to nonquadratic problems.
Proof of Conjugate Gradient Result

• Use induction to show that all gradients g^k generated up to termination are linearly independent. True for $k = 1$. Suppose no termination after k steps, and g^0, \ldots, g^{k-1} are linearly independent. Then, $Span(d^0, \ldots, d^{k-1}) = Span(g^0, \ldots, g^{k-1})$ and there are two possibilities:
 - $g^k = 0$, and the method terminates.
 - $g^k \neq 0$, in which case from the expanding manifold property

$$g^k \text{ is orthogonal to } d^0, \ldots, d^{k-1}$$

$$g^k \text{ is orthogonal to } g^0, \ldots, g^{k-1}$$

so g^k is linearly independent of g^0, \ldots, g^{k-1}, completing the induction.

• Since at most n lin. independent gradients can be generated, $g^k = 0$ for some $k \leq n$.

• Algebra to verify the direction formula.
Quasi-Newton Methods

• $x^{k+1} = x^k - \alpha^k D^k \nabla f(x^k)$, where D^k is an inverse Hessian approx.

• Key idea: Successive iterates x^k, x^{k+1} and gradients $\nabla f(x^k)$, $\nabla f(x^{k+1})$, yield curvature info

$$q^k \approx \nabla^2 f(x^{k+1})p^k,$$

$$p^k = x^{k+1} - x^k, \quad q^k = \nabla f(x^{k+1}) - \nabla f(x^k),$$

$$\nabla^2 f(x^n) \approx [q^0 \cdots q^{n-1}] [p^0 \cdots p^{n-1}]^{-1}$$

• Most popular Quasi-Newton method is a clever way to implement this idea

$$D^{k+1} = D^k + \frac{p^k p^{k'}}{p^{k'} q^k} - \frac{D^k q^k q^{k'} D^k}{q^{k'} D^k q^k} + \xi^k \tau^k v^k v^{k'},$$

$$v^k = \frac{p^k}{p^{k'} q^k} - \frac{D^k q^k}{\tau^k}, \quad \tau^k = q^{k'} D^k q^k, \quad 0 \leq \xi^k \leq 1$$

and $D^0 \succ 0$ is arbitrary, α^k by line minimization, and $D^n = Q^{-1}$ for a quadratic.
Nonderivative Methods

- Finite difference implementations
- Forward and central difference formulas
 \[
 \frac{\partial f(x^k)}{\partial x^i} \approx \frac{1}{h} (f(x^k + he_i) - f(x^k))
 \]
 \[
 \frac{\partial f(x^k)}{\partial x^i} \approx \frac{1}{2h} (f(x^k + he_i) - f(x^k - he_i))
 \]
- Use central difference for more accuracy near convergence
- Coordinate descent. Applies also to the case where there are bound constraints on the variables.