Lecture Outline

• Optimality Conditions

Problem: \(\min_{x \in X} f(x) \), where:

(a) \(X \subseteq \mathbb{R}^n \) is nonempty, convex, and closed.
(b) \(f \) is continuously differentiable over \(X \).

• Local and global minima. If \(f \) is convex local minima are also global.
Proposition 1 (Optimality Condition)

(a) If x^* is a local minimum of f over X, then
\[\nabla f(x^*)'(x - x^*) \geq 0, \quad \forall x \in X. \]

(b) If f is convex over X, then this condition is also sufficient for x^* to minimize f over X.

Figure 1: At a local minimum x^*, the gradient $\nabla f(x^*)$ makes an angle less than or equal to 90 degrees with all feasible variations $x - x^*, x \in X$.
Figure 2: Illustration of failure of the optimality condition when X is not convex. Here x^* is a local min but we have $\nabla f(x^*)(x - x^*) < 0$ for the feasible vector x shown.
Proof

(a) By contradiction. Suppose that $\nabla f(x^*)'(x - x^*) < 0$ for some $x \in X$. By the Mean Value Theorem, for every $\epsilon > 0$ there exists an $s \in [0, 1]$ such that

$$f(x^* + \epsilon(x - x^*)) = f(x^*) + \epsilon \nabla f(x^* + s\epsilon(x - x^*))'(x - x^*).$$

Since ∇f is continuous, for suff. small $\epsilon > 0$,

$$\nabla f(x^* + s\epsilon(x - x^*))'(x - x^*) < 0$$

so that $f(x^* + \epsilon(x - x^*)) < f(x^*)$. The vector $x^* + \epsilon(x - x^*)$ is feasible for all $\epsilon \in [0, 1]$ because X is convex, so the optimality of x^* is contradicted.

(b) Using the convexity of f

$$f(x) \geq f(x^*) + \nabla f(x^*)'(x - x^*)$$

for every $x \in X$. If the condition $\nabla f(x^*)'(x - x^*) \geq 0$ holds for all $x \in X$, we obtain $f(x) \geq f(x^*)$, so x^* minimizes f over X.
Optimization Subject to Bounds

- Let \(X = \{ x \mid x \geq 0 \} \). Then the necessary condition for \(x^* = (x_1^*, \ldots, x_n^*) \) to be a local min is
 \[
 \sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \geq 0, \quad \forall \ x_i \geq 0, \ i = 1, \ldots, n.
 \]

- Fix \(i \). Let \(x_j = x_j^* \) for \(j \neq i \) and \(x_i = x_i^* + 1 \):
 \[
 \frac{\partial f(x^*)}{\partial x_i} \geq 0, \quad \forall \ i.
 \]

- If \(x_i^* > 0 \), let also \(x_j = x_j^* \) for \(j \neq i \) and \(x_i = \frac{1}{2} x_i^* \). Then \(\partial f(x^*)/\partial x_i \leq 0 \), so
 \[
 \frac{\partial f(x^*)}{\partial x_i} = 0, \quad \text{if } x_i^* > 0.
 \]
• Extension to upper and lower bounds.
Optimization Over a Simplex

\[X = \left\{ x \mid x \geq 0, \sum_{i=1}^{n} x_i = r \right\} \]

where \(r > 0 \) is a given scalar.

- Necessary condition for \(x^* = (x_1^*, \ldots, x_n^*) \) to be a local min:
 \[
 \sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \geq 0, \quad \forall x_i \geq 0 \text{ with } \sum_{i=1}^{n} x_i = r.
 \]

- Fix \(i \) with \(x_i^* > 0 \) and let \(j \) be any other index. Use \(x \) with \(x_i = 0 \), \(x_j = x_j^* + x_i^* \), and \(x_m = x_m^* \) for all \(m \neq i, j \):
 \[
 \left(\frac{\partial f(x^*)}{\partial x_j} - \frac{\partial f(x^*)}{\partial x_i} \right) x_i^* \geq 0,
 \]
 \[x_i^* > 0 \implies \frac{\partial f(x^*)}{\partial x_i} \leq \frac{\partial f(x^*)}{\partial x_j}, \quad \forall j, \]
 i.e., at the optimum, positive components have minimal (and equal) first cost derivative.
Optimal Routing

- Given a data network, and a set W of OD pairs $w = (i, j)$. Each OD pair w has input traffic r_w.

- Optimal routing problem:
minimize \[D(x) = \sum_{(i,j)} D_{ij} \left(\sum_{\text{all paths } p \text{ containing } (i,j)} x_p \right) \]

subject to \[\sum_{p \in P_w} x_p = r_w, \quad \forall w \in W, \]
\[x_p \geq 0, \quad \forall p \in P_w, \quad w \in W \]

- The partial derivative of the objective wrt \(x_p \) is

\[
\frac{\partial D(x)}{\partial x_p} = \sum_{\text{all arcs } (i,j) \text{ on path } p} D'_{ij}(F_{ij})
\]

where \(F_{ij} \) are the arc flows corresponding to \(x \).
Natural interpretation as path length of \(p \).

- Optimality condition

\[x^*_p > 0 \implies \frac{\partial D(x^*)}{\partial x_p} \leq \frac{\partial D(x^*)}{\partial x_{p'}}, \quad \forall p' \in P_w, \]

i.e., paths carrying \(> 0 \) flow are shortest with respect to first cost derivative.
Let $z \in \mathbb{R}^n$ and a closed convex set X be given. Problem:

\[
\begin{align*}
\text{minimize} & & f(x) = \|z - x\|^2 \\
\text{subject to} & & x \in X.
\end{align*}
\]

Proposition 2 (*Projection Theorem*) Problem has a unique solution $[z]^+$ (the projection of z).

Figure 3: Necessary and sufficient condition for x^* to be the projection. The angle between $z - x^*$ and $x - x^*$ should be greater or equal to 90 degrees for all $x \in X$, or $(z - x^*)(x - x^*) \leq 0$.

• If X is a subspace, $z - x^* \perp X$.

• The mapping $f : \mathbb{R}^n \to X$ defined by $f(x) = [x]^+$ is continuous and nonexpansive, that is,

$$\|[x]^+ - [y]^+\| \leq \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$