Interior-Point Theory for Convex Optimization

Robert M. Freund

April, 2007

©2007 Massachusetts Institute of Technology. All rights reserved.
1 Background

The material presented herein is based on the following two research texts:

• *Interior-Point Polynomial Algorithms in Convex Programming* by Yurii Nesterov and Arkadii Nemirovskii, SIAM 1994, and

2 Barrier Scheme for Solving Convex Optimization

Our problem of interest is

$$P : \text{minimize}_x \ c^T x$$

s.t. \(x \in S \),

where \(S \) is some closed convex set, and denote the optimal objective value by \(V^* \). Let \(f(\cdot) \) be a barrier function for \(S \), namely \(f(\cdot) \) satisfies:

• \(f(\cdot) \) is strictly convex on its domain \(D_f := \text{int}S \)

• \(f(x) \to \infty \) as \(x \to \partial S \).

The idea of the barrier method is to dissuade the algorithm from computing points too close to \(\partial S \), effectively eliminating the complicating factors of dealing with \(\partial S \). For every value of \(\mu > 0 \) we create the barrier problem:

$$P_\mu : \text{minimize}_x \ \mu c^T x + f(x)$$

s.t. \(x \in D_f \).

Note that \(P_\mu \) is effectively unconstrained, since the boundary of the feasible region will never be encountered. The solution of \(P_\mu \) is denoted \(z(\mu) \):
\[z(\mu) := \arg \min_x \{ \mu c^T x + f(x) : x \in D_f \} . \]

Intuitively, as \(\mu \to \infty \), the impact of the barrier function on the solution of \(P_\mu \) should become less and less, so we should have \(c^T z(\mu) \to V^* \) as \(\mu \to \infty \). Presuming this is the case, the barrier scheme tries to use Newton’s method to solve for approximate solutions \(x^i \) of \(P_{\mu_i} \) for an increasing sequence of values of \(\mu_i \to \infty \).

In order to be more specific about how the barrier scheme might work, let us assume that at each iteration we have some value \(x \in D_f \) that is an approximate solution of \(P_\mu \) for a given value \(\mu > 0 \). We will, of course, need a way to define “is an approximate solution of \(P_\mu \)” that will be developed later. We then will increase the barrier parameter \(\mu \) by a multiplicative factor \(\alpha > 1 \):

\[\hat{\mu} \leftarrow \alpha \mu . \]

Then we will take a Newton step at \(x \) for the problem \(P_{\hat{\mu}} \) to obtain a new point \(\hat{x} \) that we would like to then be an approximate solution of \(P_{\hat{\mu}} \). If so, we can continue the scheme recursively.

We typically use \(g(\cdot) \) and \(H(\cdot) \) to denote the gradient and Hessian of \(f(\cdot) \). Note that the Newton iterate for \(P_{\hat{\mu}} \) has the formula:

\[\hat{x} \leftarrow x - H(x)^{-1}(\hat{\mu}c + g(x)) . \]

The general algorithmic scheme is presented in Table 1.

3 Some Plain Facts

Let \(f(\cdot) : \mathbb{R}^n \to \mathbb{R} \) be a twice-differentiable function. We typically use \(g(\cdot) \) and \(H(\cdot) \) denote the gradient and Hessian of \(f(\cdot) \).

Fact 3.1 \(g(y) = g(x) + \int_0^1 H(x + t(y-x))(y-x)dt \)

Fact 3.2 Let \(h(t) := f(x + tv) \). Then
General Barrier Scheme

Step 1 Initialize. Define $\alpha > 1$.
Initialize with $\mu_0 > 0$, $x^0 \in D_f$ that is “an approximate solution of P_{μ_0}.” Set $x \leftarrow x^0$, $\mu \leftarrow \mu_0$, and $i \leftarrow 0$.

Step 2 Increase μ and take Newton step.
$\hat{\mu} \leftarrow \alpha \mu$

$\hat{x} \leftarrow x - H(x)^{-1}(\hat{\mu} c + g(x))$

Step 3 Update counter and repeat. $x \leftarrow \hat{x}$, $\mu \leftarrow \hat{\mu}$,
$i \leftarrow i + 1$ and Goto Step 2.

| Table 1: The General Barrier Scheme. |

- $h'(t) = g(x + tv)^T v$
- $h''(t) = v^T H(x + tv)v$

Fact 3.3

$$f(y) = f(x) + g(x)^T (y - x) + \frac{1}{2} (y - x)^T H(x)(y - x)$$

$$+ \int_0^1 \int_0^t (y - x)[H(x + s(y - x)) - H(x)](y - x) \, ds \, dt$$

Fact 3.4

$$\int_0^r \frac{1}{(1-at)^2} - 1 \, dt = \frac{ar^2}{1-ar}$$

This follows by observing that $\int \frac{1}{(1-at)^2} \, dt = \frac{1}{a(1-at)}$.

4
Fact 3.5 Suppose $f(\cdot)$ is a convex function on \mathbb{R}^n, and $S \subset \mathbb{R}^n$ is a compact convex set, and suppose $x \in \text{int}S$ satisfies $f(x) \leq f(y)$ for all $y \in \partial S$. Then $f(\cdot)$ attains its global minimizer on S.

Fact 3.6 Let $\|v\| := \sqrt{v^Tv}$ be the Euclidean norm. Let $\lambda_1 \leq \ldots \leq \lambda_n$ be the ordered eigenvalues of the symmetric matrix M, and define $\|M\| := \max\{|\lambda_i| : \|v\| \leq 1\}$. Then $\|M\| = \max_i\{\lambda_i\} = \max\{|\lambda_n|, |\lambda_1|\}$.

Fact 3.7 Suppose A, B are symmetric and $A + B = \theta I$ for some $\theta \in \mathbb{R}$. Then $AB = BA$. Furthermore, if $A \succeq 0, B \succeq 0$, then $A^{\frac{1}{2}}B^{\frac{1}{2}} = B^{\frac{1}{2}}A^{\frac{1}{2}}$.

To see why this is true, decompose $A = PDP^T$ where P is orthonormal ($P^T = P^{-1}$) and D is diagonal. Then $B = P(\theta I - D)^{-1}P^T$, whereby $AB = PD^{\frac{1}{2}}P^T = P(\theta I - D)P^T = P(\theta I - D)D^{\frac{1}{2}}P^T = BA$. If $A \succeq 0, B \succeq 0$, then $A^{\frac{1}{2}} = PD^{\frac{1}{2}}P^T, B^{\frac{1}{2}} = (\theta I - D)^{\frac{1}{2}}P^T$, and similarly $A^{\frac{1}{2}}B^{\frac{1}{2}} = PD^{\frac{1}{2}}P^T(\theta I - D)^{\frac{1}{2}}P^T = PD^{\frac{1}{2}}(\theta I - D)^{\frac{1}{2}}P^T = P(\theta I - D)D^{\frac{1}{2}}P^T = P(\theta I - D)^{\frac{1}{2}}P^TPD^{\frac{1}{2}}P^T = B^{\frac{1}{2}}A^{\frac{1}{2}}$.

Fact 3.8 Suppose $\lambda_n \geq \ldots \geq \lambda_1 > 0$. Then

$$\max_i\{\lambda_i - 1\} \leq \max\{\lambda_n - 1, 1/\lambda_1 - 1\}.$$

Fact 3.9 Suppose $a, b, c, d > 0$. Then

$$\min\left\{\frac{a}{b}, \frac{c}{d}\right\} \leq \frac{a + c}{b + d} \leq \max\left\{\frac{a}{b}, \frac{c}{d}\right\}.$$

4 Self-Concordant Functions and Properties

Let $f(\cdot)$ be a strictly convex twice-differentiable function defined on the open set $D_f := \text{domain}f(\cdot)$ and let $\bar{D}_f := \text{cl} D_f$. Consider $x \in D_f$. We will often abbreviate $H_x := H(x)$ for the Hessian at x. Notice that $H_x \succ 0$ and so can be used to define the norm

$$\|v\|_x := \sqrt{v^T H_x v}.$$
which is the “local norm” at x. Let
\[B_x(x,1) := \{ y : \|y - x\|_x < 1 \} . \]
This is called the open Dikin ball at x after the Russian mathematician I.I.Dikin.

Definition 4.1 $f(\cdot)$ is said to be (strongly nondegenerate) self-concordant if for all $x \in D_f$ we have $B_x(x,1) \subset D_f$, and for all $y \in B_x(x,1)$ we have:
\[
1 - \|y - x\|_x \leq \frac{\|v\|_y}{\|v\|_x} \leq \frac{1}{1 - \|y - x\|_x}
\]
for all $v \neq 0$.

Let SC denote the class of all such functions.

Remark 1 The following are the most-used self-concordant functions:

- $f(x) = -\ln(x)$ for $x \in D_f = \{ x \in \mathbb{R} : x > 0 \}$
- $f(X) = -\ln \det(X)$ for $X \in D_f = \{ X \in S^{k \times k} : X \succ 0 \}$
- $f(x) = -\ln(x_1^2 - \sum_{i=2}^{\infty} x_j^2)$ for $x \in D_f := \{ x : \|(x_2, \ldots, x_n)\| \leq x_1 \}$

Before showing that these functions are self-concordant, let us see how we can combine self-concordant functions to obtain other self-concordant functions.

Proposition 4.1 (self-concordance under addition/intersection) Suppose that $f_i(\cdot) \in SC$ with domain $D_i := D_{f_i}$ for $i = 1, 2$, and suppose that $D := D_1 \cap D_2 \neq \emptyset$. Define $f(\cdot) = f_1(\cdot) + f_2(\cdot)$. Then $D_f = D$ and $f(\cdot) \in SC$.

Proof: Consider $x \in D = D_1 \cap D_2$. Let $B^i_x(c,r)$ denote the Dikin ball centered at c with radius r defined by $f_i(\cdot)$ and let $\|\cdot\|_{x,i}$ denote the norm induced at x using the Hessian $H_i(x)$ of $f_i(x)$ for $i = 1, 2$. Then since $x \in D_i$ we have $B^i_x(x,1) \subset D_i$ and $\|v\|^2_2 = \|v\|^2_{x,1} + \|v\|^2_{x,2}$. Because $H(x) =$
\[H_1(x) + H_2(x). \text{ Therefore if } \|y - x\|_x < 1 \text{ it follows that } \|y - x\|_{x,1} < 1 \text{ and } \|y - x\|_{x,2} < 1, \text{ whereby } y \in B^i_x(x, 1) \subset D_i \text{ and hence } y \in D_1 \cap D_2 = D. \]

Also, for any \(v \neq 0 \), using Fact 3.9 we have

\[
\frac{\|v\|_y^2}{\|v\|_x^2} = \frac{\|v\|_{y,1}^2 + \|v\|_{y,2}^2}{\|v\|_{x,1}^2 + \|v\|_{x,2}^2} \leq \max \left\{ \frac{\|v\|_{y,1}^2}{\|v\|_{x,1}^2}, \frac{\|v\|_{y,2}^2}{\|v\|_{x,2}^2} \right\}
\]

\[
\leq \max \left\{ \left(\frac{1}{1 - \|y - x\|_{x,1}} \right)^2, \left(\frac{1}{1 - \|y - x\|_{x,2}} \right)^2 \right\}
\]

\[
\leq \left(\frac{1}{1 - \|y - x\|_x} \right)^2.
\]

The virtually identical argument can also be applied to prove the “\(\geq \)” inequality of the definition of self-concordance by replacing “max” by “min” above and applying the other inequality of Fact 3.9. \(\blacksquare \)

Proposition 4.2 (self-concordance under affine transformation) Let \(A \in \mathbb{R}^{m \times n} \) satisfy \(\text{rank } A = n \leq m \). Suppose that \(f(\cdot) \in SC \) with domain \(D_f \subset \mathbb{R}^m \) and define \(\hat{f}(\cdot) : \hat{f}(x) = f(Ax - b) \). Then \(\hat{f}(\cdot) \in SC \) with domain \(\hat{D} := \{ x : Ax - b \in D_f \} \).

Proof: Consider \(x \in \hat{D} \) and \(s = Ax - b \). Letting \(g(s) \) and \(H(s) \) denote the gradient and Hessian of \(f(s) \) and \(\hat{g}(x) \) and \(H(x) \) the gradient and Hessian of \(\hat{f}(x) \), we have \(\hat{g}(x) = A^T g(s) \) and \(H(x) = A^T H(s) A \). Suppose that \(\|y - x\|_x < 1 \). Then defining \(t := Ay - b \) we have \(1 > \|y - x\|_x = \sqrt{(y^T A^T - x^T A^T) H(s)(Ay - Ax)} = \|t - s\|_s \), whereby \(t \in D_f \) and so \(y \in \hat{D} \). Therefore \(B_x(x, 1) \subset \hat{D} \). Also, for any \(v \neq 0 \), we have

\[
\frac{\|v\|_y}{\|v\|_x} = \sqrt{\frac{v^T A^T H(t) A v}{v^T A^T H(s) A v}} = \frac{\|Av\|_s}{\|Av\|_s} \leq \frac{1}{1 - \|s - t\|_s} = \frac{1}{1 - \|y - x\|_x}.
\]

The exact same argument can also be applied to prove the “\(\geq \)” inequality of the definition of self-concordance. \(\blacksquare \)

Proposition 4.3 The three functions defined in Remark 1 are self-concordant.
Proof: We will prove that \(f(X) := -\ln \det(X) \) is self-concordant on its domain \(\{ X \in S^{k \times k} : X \succ 0 \} \). When \(k = 1 \), this is the logarithmic barrier function. Although it is true, we will not prove that \(f(x) = -\ln(x_1^2 - \sum_{j=2}^n x_j^2) \) is a self-concordant barrier for the interior of the second-order cone \(Q^n := \{ x : \| (x_2, \ldots, x_n) \| \leq x_1 \} \), as this proof is arithmetically uninspiring.

To prove \(f(X) := -\ln \det(X) \) is self-concordant, let \(X \succ 0 \) be given, and let \(Y \in B_X(X, 1) \) and \(V \in S^{k \times k} \) be given. We need to verify three statements:

1. \(Y \succ 0 \),
2. \(\frac{\| V \|_Y}{\| V \|_X} \leq \frac{1}{1 - \| Y - X \|_X} \), and
3. \(\frac{\| V \|_Y}{\| V \|_X} \geq 1 - \| Y - X \|_X \)

To get started, direct expansion yields the following second-order expansion of \(f(X) \):

\[
 f(X + \Delta X) \approx f(X) - X^{-1} \cdot \Delta X + \frac{1}{2} \Delta X \cdot X^{-1} \Delta XX^{-1}
\]

and indeed it is easy to derive:

- \(g(X) = -X^{-1} \) and
- \(H(X) \Delta X = X^{-1} \Delta XX^{-1} \)

It therefore follows that

\[
\| \Delta X \|_X = \sqrt{\text{Tr}(\Delta XX^{-1} \Delta XX^{-1})} = \sqrt{\text{Tr}(X^{-1} \Delta XX^{-1} \Delta XX^{-1} \Delta XX^{-1})} = \sqrt{\text{Tr}([X^{-1} \Delta XX^{-1}]^2)}.
\]

Now define two auxiliary matrices:

\[
 F := X^{-\frac{1}{2}} Y X^{-\frac{1}{2}} \quad \text{and} \quad S := X^{-\frac{1}{2}} V X^{-\frac{1}{2}}.
\]
Note that
\[\|S\| = \sqrt{\text{Tr}(X^{-\frac{1}{2}}VX^{-\frac{1}{2}}X^{-\frac{1}{2}}VX^{-\frac{1}{2}})} = \|V\|_X. \] (1)
Furthermore let us write \(F = QDQ^T \) where the diagonal matrix \(D \) is comprised of the eigenvalues of \(F \) and let \(\lambda \) denote the vector of eigenvalues, with minima and maxima \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \). To prove item (1.) above, we observe:

\[
1 > \|Y - X\|_X^2 = \text{Tr}(X^{-\frac{1}{2}}(Y - X)X^{-\frac{1}{2}}X^{-\frac{1}{2}}(Y - X)X^{-\frac{1}{2}}) \]
\[
= \text{Tr}(F - I)(F - I)) \]
\[
= \text{Tr}(Q(D - I)Q^TQ(D - I)Q^T) \]
\[
= \text{Tr}((D - I)(D - I)) \]
\[
= \sum_{j=1}^{k} (\lambda_j - 1)^2 \]
\[
= \|\lambda - e\|_2^2 \]

where \(e = (1, \ldots, 1) \). Since the last quantity above is less than 1, it follows that \(\lambda > 0 \) and hence \(F > 0 \) and therefore \(Y > 0 \), establishing (1.). In order to establish (2.) and (3.) we will need the following

\[\|F^{-\frac{1}{2}}SF^{-\frac{1}{2}}\| \leq \frac{1}{\lambda_{\text{min}}} \|S\| \quad \text{and} \quad \|F^{-\frac{1}{2}}SF^{-\frac{1}{2}}\| \geq \frac{1}{\lambda_{\text{max}}} \|S\|. \] (3)
To prove (3), we proceed as follows:

\[\|F^{-\frac{1}{2}}SF^{-\frac{1}{2}}\| = \sqrt{\text{Tr}(QD^{-\frac{1}{2}}Q^TSD^{-\frac{1}{2}}QD^{-\frac{1}{2}}Q^TSD^{-\frac{1}{2}}Q^T)} \]

\[= \sqrt{\text{Tr}(D^{-1}Q^TSD^{-1}Q^T)} \]

\[\leq \frac{1}{\sqrt{\lambda_{\min}}} \sqrt{\text{Tr}(Q^TSD^{-1}Q^T)} \]

\[= \frac{1}{\sqrt{\lambda_{\min}}} \sqrt{\text{Tr}(D^{-1}SS)} \]

\[\leq \frac{1}{\lambda_{\min}} \sqrt{\text{Tr}(SS)} = \frac{1}{\lambda_{\min}} \|S\| \]

The other inequality of (3) follows by substituting \(\lambda_{\max}\) for \(\lambda_{\min}\) and switching \(\geq\) for \(\leq\) in the above chain of equalities and inequalities. We now have:

\[\|V\|_Y^2 = \text{Tr}(VY^{-1}V^Y^{-1}) \]

\[= \text{Tr}(X^{-\frac{1}{2}}VX^{-\frac{1}{2}}X^{\frac{1}{2}}Y^{-1}X^{\frac{1}{2}}X^{-\frac{1}{2}}VX^{-\frac{1}{2}}X^{\frac{1}{2}}Y^{-1}X^{\frac{1}{2}}) \]

\[= \text{Tr}(SF^{-1}SF) \]

\[= \text{Tr}(F^{-\frac{1}{2}}SF^{-\frac{1}{2}}F^{-\frac{1}{2}}SF^{-\frac{1}{2}}) \]

\[= \|F^{-\frac{1}{2}}SF^{-\frac{1}{2}}\|^2 \leq \frac{1}{\lambda_{\min}} \|S\|^2 = \frac{1}{\lambda_{\min}} \|V\|_X^2 \]

where the last inequality follows from (3) and the last equality from (1). Therefore

\[\frac{\|V\|_Y}{\|V\|_X} \leq \frac{1}{\lambda_{\min}} \leq \frac{1}{1 - |1 - \lambda_{\min}|} \leq \frac{1}{1 - \|e - \lambda\|_2} = \frac{1}{1 - \|Y - X\|_X} \]

where the last equality is from (2). This proves (2.). To prove (3.), use the same equalities as above and the second inequality of (3) to obtain:

\[\|V\|_Y^2 = \|F^{-\frac{1}{2}}SF^{-\frac{1}{2}}\|^2 \geq \frac{1}{\lambda_{\max}} \|V\|_X^2 \]
and therefore $\|V\|_V \geq \frac{1}{\lambda_{\max}}$. If $\lambda_{\max} \leq 1$ it follows directly that $\frac{1}{\lambda_{\max}} \geq 1 \geq 1 - \|Y - X\|_X$, while if $\lambda_{\max} > 1$ we have:

$$\|Y - X\|_X = \|\lambda - e\|_2 \geq \lambda_{\max} - 1,$$

from which it follows that

$$\lambda_{\max}\|Y - X\|_X \geq \|Y - X\|_X \geq \lambda_{\max} - 1$$

and so

$$\lambda_{\max} (1 - \|Y - X\|_X) \leq 1.$$

From this it then follows that $\frac{\lambda_{\max}}{\lambda_{\max}} \geq 1 - \|Y - X\|_X$, thus completing the proof of (3.).

Our next result is rather technical, as it shows further properties of changes in Hessian matrices under self-concordance:

Lemma 4.1 Suppose that $f(\cdot) \in \mathcal{SC}$ and $x \in D_f$. If $\|y - x\|_x < 1$, then

- $\|H^{-\frac{1}{2}}_x H_y H^{-\frac{1}{2}}_x\| \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2$
- $\|H^{-\frac{1}{2}}_y H^{-\frac{1}{2}}_y\| \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2$
- $\|I - H^{-\frac{1}{2}}_x H_y H^{-\frac{1}{2}}_x\| \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2 - 1$
- $\|I - H^{-\frac{1}{2}}_x H_y H^{-\frac{1}{2}}_x\| \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2 - 1$

Proof: Let $Q := H^{-\frac{1}{2}}_x H_y H^{-\frac{1}{2}}_x$, and observe that $Q \succ 0$ with eigenvalues $\lambda_n \geq \ldots \geq \lambda_1 > 0$. From Fact 3.6 we have

$$\sqrt{\|Q\|} = \sqrt{\lambda_n} = \max_w \sqrt{w^T Q w} = \max_v \sqrt{v^T H_y v} = \max_v \|v\|_y \leq \frac{1}{1 - \|y - x\|_x}$$

(where the third equality uses the substitution $v = H^{-\frac{1}{2}}_x w$) and squaring yields the first assertion. Similarly, we have

$$\frac{1}{\sqrt{\|Q^{-1}\|}} = \sqrt{\lambda_1} = \min_w \sqrt{w^T Q w} = \min_v \sqrt{v^T H_y v} = \min_v \|v\|_y \geq 1 - \|y - x\|_x$$

11
(where the third equality again uses the substitution $v = H_{\frac{1}{2}}w$) and squaring and rearranging yields the second assertion. Next observe

$$\|I - Q\| = \max_i{|\lambda_i - 1|} \leq \max\{\lambda_n - 1, 1/\lambda_1 - 1\} \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2 - 1$$

where the first inequality is from Fact 3.8 and the second inequality follows from the two equation streams above, thus showing the third assertion of the lemma. Finally, we have

$$\|I - Q^{-1}\| = \max_i{|1/\lambda_i - 1|} \leq \max\{1/\lambda_1 - 1, \lambda_n - 1\} \leq \left(\frac{1}{1 - \|y - x\|_x}\right)^2 - 1$$

where the first inequality is from Fact 3.8 and the second inequality follows from the two equation streams above, thus showing the fourth assertion of the lemma. □

Recall Newton’s method to minimize $f(\cdot)$. At $x \in D_f$ we compute the Newton step:

$$n(x) := -H(x)^{-1}g(x)$$

and compute the Newton iterate:

$$x_+ := x + n(x) = x - H(x)^{-1}g(x).$$

When $f(\cdot) \in SC$, Newton’s method has some very wonderful properties as we now show.

Theorem 4.1 Suppose that $f(\cdot) \in SC$ and $x \in D_f$. If $\|n(x)\|_x < 1$, then

$$\|n(x_+)\|_{x_+} \leq \left(\frac{\|n(x)\|_x}{1 - \|n(x)\|_x}\right)^2.$$

Proof: We will prove this by proving the following two results which together establish the result:

(I) $\|n(x_+)\|_{x_+} \leq \frac{\|H_{\frac{1}{2}}g(x_+)\|}{1 - \|n(x)\|_x}$, and
\[(II) \|H_x^{-\frac{1}{2}}g(x_+)\| \leq \frac{\|n(x)\|_2^2}{1 - \|n(x)\|_x} \]

First we prove (I):
\[
\|n(x_+)\|_2^2 = g(x_+)^T H^{-1}(x_+)H(x_+)H^{-1}(x_+)g(x_+)
\]
\[
= g(x_+)^T H_x^{-\frac{1}{2}} H_f^{-\frac{1}{2}} H^{-1}(x_+)H_f^{-\frac{1}{2}} H_x^{-\frac{1}{2}} g(x_+)
\]
\[
\leq \|H_x^{-\frac{1}{2}} H^{-1}(x_+)H_f^{-\frac{1}{2}} \| \|H_x^{-\frac{1}{2}} g(x_+)\|^2
\]
\[
\leq \left(\frac{1}{1 - \|n(x)\|_x} \right)^2 \|H_x^{-\frac{1}{2}} g(x_+)\|^2 \quad \text{(from Lemma 4.1)}
\]

which proves (I). To prove (II), observe first that
\[
g(x_+) = g(x_+) - g(x) + g(x)
\]
\[
= g(x_+) - g(x) - H_x n(x)
\]
\[
= \int_0^1 H(x + t(x_+ - x))(x_+ - x) dt - H_x n(x) \quad \text{(from Fact 3.1)}
\]
\[
= \int_0^1 H(x + tn(x)) - H_x n(x) dt
\]
\[
= \int_0^1 [H(x + tn(x)) - H_x] H_x^{-\frac{1}{2}} H_f^{-\frac{1}{2}} n(x) dt.
\]

Therefore
\[
H_x^{-\frac{1}{2}} g(x_+) = \int_0^1 \left[H_x^{-\frac{1}{2}} H(x + tn(x)) H_x^{-\frac{1}{2}} - I \right] H_f^{-\frac{1}{2}} n(x) dt
\]

which then implies
\[
\|H_x^{-\frac{1}{2}} g(x_+)\| \leq \int_0^1 \|H_x^{-\frac{1}{2}} H(x + tn(x)) H_x^{-\frac{1}{2}} - I\| \|H_f^{-\frac{1}{2}} n(x)\| dt
\]
\[
\leq \|H_x^{-\frac{1}{2}} n(x)\| \int_0^1 \left(\frac{1}{1 - \|n(x)\|_x} \right)^2 - 1 dt \quad \text{(from Lemma 4.1)}
\]
\[
= \|n(x)\|_x \frac{\|n(x)\|_x^2}{(1 - \|n(x)\|_x)^2} \quad \text{(from Fact 3.4)}
\]

which proves (II). \[\blacksquare\]

Proposition 4.4 Suppose that \(f(\cdot) \in SC\) and \(x \in D_f\). If \(\|y - x\|_x < 1\), then
\[
\left| f(y) - \left[f(x) + g(x)^T (y - x) + \frac{1}{2} (y - x)^T H_x (y - x) \right] \right| \leq \frac{\|y - x\|_x^3}{3(1 - \|y - x\|_x)}.
\]
Proof: Let L denote the left-hand side of the inequality to be proved. From Fact 3.3 we have

$$L = \left| \int_0^1 \int_0^t (y - x)^T [H(x + s(y - x)) - H(x)](y - x) \, ds \, dt \right|$$

$$= \left| \int_0^1 \int_0^t (y - x)^T H \left(\frac{1}{2} H(x + s(y - x)) - \frac{1}{2} I \right) (y - x) \, ds \, dt \right|$$

$$\leq \|y - x\|_x^2 \left| \int_0^1 \int_0^t \left(\frac{1}{1 - s\|y - x\|_x} \right)^2 - 1 \, ds \, dt \right|$$

(from Lemma 4.1)

$$= \|y - x\|_x^2 \int_0^1 \int_0^t \left(\frac{1}{1 - s\|y - x\|_x} \right)^2 - 1 \, ds \, dt$$

(from Fact 3.4)

$$\leq \frac{\|y - x\|_x^3}{1 - \|y - x\|_x} \int_0^1 t^2 \, dt = \frac{\|y - x\|_x^3}{3(1 - \|y - x\|_x)}.$$

\[
\text{Theorem 4.2} \quad \text{Suppose that } f(\cdot) \in SC \text{ and } x \in D_f. \text{ If } \|n(x)\|_x < \frac{1}{4}, \text{ then } f(\cdot) \text{ has a minimizer } z, \text{ and}
\]

$$\|z - x\|_x \leq \frac{3\|n(x)\|_x^2}{(1 - \|n(x)\|_x)^3}.$$

Proof: First suppose that $\|n(x)\|_x \leq 1/9$, and define $Q_x(y) := f(x) + g(x)^T(y - x) + \frac{1}{2}(y - x)^T H_x(y - x)$. Let y satisfy $\|y - x\|_x \leq 1/3$. Then from Proposition 4.4 we have

$$|f(y) - Q_x(y)| \leq \frac{\|y - x\|_x^3}{3(1 - 1/3)} \leq \frac{\|y - x\|_x^2}{9(2/3)} = \frac{\|y - x\|_x^2}{6}.$$
and therefore
\[f(y) \geq f(x) + g(x)^T H_x^{-1} H_x^{\frac{1}{2}} H_x^{\frac{1}{2}} (y - x) + \frac{1}{2} \|y - x\|_x^2 - \frac{1}{6} \|y - x\|_x^2 \]
\[\geq f(x) - \|n(x)\|_x \|y - x\|_x + \frac{1}{3} \|y - x\|_x^2 \]
\[= f(x) + \frac{1}{3} \|y - x\|_x (-3\|n(x)\|_x + \|y - x\|_x) . \]

Now if \(\tilde{y} \in \partial S := \partial \{ y : \|y - x\|_x \leq 3\|n(x)\|_x \} \), it follows that \(f(\tilde{y}) \geq f(x) \).
So, by Fact 3.5, \(f(\cdot) \) has a global minimizer \(z \in S \), and so \(\|z - x\|_x \leq 3\|n(x)\|_x \).

Now suppose that \(\|n(x)\|_x \leq 1/4 \). From Theorem 4.1 we have
\[\|n(x_+)\|_{x_+} \leq \left(\frac{1/4}{1 - 1/4} \right)^2 = 1/9 , \]
so \(f(\cdot) \) has a global minimizer \(z \) and \(\|z - x_+\|_{x_+} \leq 3\|n(x_+)\|_{x_+} \). Therefore
\[\|z - x_+\|_x \leq \frac{\|z - x_+\|_{x_+}}{1 - \|x - x_+\|_x} \quad \text{(from Definition 4.1)} \]
\[= \frac{\|z - x_+\|_{x_+}}{1 - \|n(x)\|_x} \]
\[\leq \frac{3\|n(x_+)\|_{x_+}}{1 - \|n(x)\|_x} \]
\[\leq \frac{3\|n(x)\|_x^2}{1 - \|n(x)\|_x^3} . \quad \text{(from Theorem 4.1)} \]

5 Self-Concordant Barriers

We begin with another definition.
Definition 5.1 \(f(\cdot) \) is a \(\vartheta \)-(strongly nondegenerate self-concordant)-barrier if \(f(\cdot) \in \mathcal{SC} \) and
\[
\vartheta = \vartheta_f := \max_{x \in D_f} \|n(x)\|_2^2 < \infty .
\]

Note that \(\|n(x)\|_2^2 = (-g(x)^TH(x)^{-1}H(x)H(x)^{-1}(-g(x)) = g(x)^TH(x)^{-1}g(x) \),
so we can equivalently define
\[
\vartheta_f := \max_{x \in D_f} g(x)^TH(x)^{-1}g(x) .
\]
The quantity \(\vartheta_f \) is called the complexity value of the barrier \(f(\cdot) \).

Let \(\mathcal{SCB} \) denote the class of all such functions. The following property is very important.

Theorem 5.1 Suppose that \(f(\cdot) \in \mathcal{SCB} \) and \(x, y \in D_f \). Then
\[
g(x)^T(y - x) < \vartheta_f .
\]

Proof: Define \(\phi(t) := f(x+t(y-x)) \), whereby \(\phi'(t) = g(x+t(y-x))^T(y-x) \) and \(\phi''(t) = (y-x)^TH(x+t(y-x))(y-x) \). We want to prove that \(\phi'(0) < \vartheta_f \).
If \(\phi'(0) \leq 0 \) there is nothing further to prove, so we can assume that \(\phi'(0) > 0 \) whereby from convexity it also follows that \(\phi'(t) > 0 \) for all \(t > 0 \) in the domain of \(\phi(\cdot) \). Let \(t > 0 \) be in the domain of \(\phi(\cdot) \) and let \(v = x + t(y - x) \).
Then
\[
\phi'(t) = g(v)^T(y - x)
\]
\[
= g(v)^THv^{-1}H_{\frac{1}{2}}H_{\frac{1}{2}}(y - x)
\]
\[
= -n(v)H_{\frac{1}{2}}H_{\frac{1}{2}}(y - x)
\]
\[
\leq \|H_{\frac{1}{2}}n(v)\| \|H_{\frac{1}{2}}(y - x)\|
\]
\[
= \|n(v)\|_v \|y - x\|_v \leq \sqrt{\vartheta_f} \|y - x\|_v .
\]
Also \(\phi''(t) = (y-x)H_v(y-x) = \|y-x\|_v^2 \), whereby
\[
\frac{\phi''(t)}{\phi'(t)^2} \geq \frac{\|y-x\|_v^2}{\vartheta_f \|y-x\|_v^2} = \frac{1}{\vartheta_f}
\]
for all \(t > 0 \) in the domain of \(\phi(\cdot) \). In fact, for all \(s > 0 \) that are in the domain of \(\phi(\cdot) \) it follows that

\[
\frac{s}{\partial_f} \leq \int_0^s \frac{\phi''(t)}{\phi'(t)^2} \, dt = \frac{1}{\phi'(0)} - \frac{1}{\phi'(s)},
\]

and since \(s = 1 \) is in the domain of \(\phi(\cdot) \) we have

\[
\frac{1}{\phi'(0)} \geq \frac{1}{\phi'(1)} + \frac{1}{\partial_f},
\]

which proves the result. ■

The next two results show how the complexity value \(\vartheta \) behaves under addition/intersection and affine transformation.

Theorem 5.2 (self-concordant barriers under addition/intersection)

Suppose that \(f_i(\cdot) \in SCB \) with domain \(D_i := D_{f_i} \) and complexity values \(\vartheta_i := \vartheta_{f_i} \) for \(i = 1,2 \), and suppose that \(D := D_1 \cap D_2 \neq \emptyset \). Define \(f(\cdot) = f_1(\cdot) + f_2(\cdot) \). Then \(f(\cdot) \in SCB \) with domain \(D \), and \(\vartheta_f \leq \vartheta_1 + \vartheta_2 \).

Proof: Fix \(x \in D \) and let \(g, g_1, g_2 \) and \(H, H_1, H_2 \) denote the gradients and Hessians of \(f(\cdot), f_1(\cdot), f_2(\cdot) \) at \(x \), whereby \(g = g_1 + g_2 \) and \(H = H_1 + H_2 \). Define \(A_i = H^{-\frac{1}{2}}H_iH^{-\frac{1}{2}} \) for \(i = 1,2 \). Then \(A_i \succ 0 \), \(A_1 + A_2 = I \), so \(A_1, A_2 \) commute and \(A_1^\frac{1}{2}, A_2^\frac{1}{2} \) commute, from Fact 3.7. Also define \(u_i = A_i^{-\frac{1}{2}}H^{-\frac{1}{2}}g_i \)
for $i = 1, 2$. We have
\[
g^T H^{-1} g = g_1^T H^{-1} g_1 + g_2^T H^{-1} g_2 + 2g_1^T H^{-1} g_2 \\
= u_1^T A_1 u_1 + u_2^T A_2 u_2 + 2u_1^T A_1^\frac{1}{2} A_2^\frac{1}{2} u_2 \\
= u_1^T [I - A_2] u_1 + u_2^T [I - A_1] u_2 + 2u_1^T A_2^\frac{1}{2} A_1^\frac{1}{2} u_2 \\
= u_1^T u_1 + u_2^T u_2 - \left[u_1^T A_2 u_1 + u_2^T A_1 u_2 - 2u_1^T A_2^\frac{1}{2} A_1^\frac{1}{2} u_2 \right] \\
= g_1^T H^{-\frac{1}{2}} A_1^{-1} H^{-\frac{1}{2}} g_1 + g_2^T H^{-\frac{1}{2}} A_2^{-1} H^{-\frac{1}{2}} g_2 - \| A_2^\frac{1}{2} u_1 - A_1^\frac{1}{2} u_2 \|^2 \\
\leq g_1^T H^{-\frac{1}{2}} H_1^\frac{1}{2} H_1^{-1} H_2^\frac{1}{2} H_2^\frac{1}{2} H^{-\frac{1}{2}} g_1 + g_2^T H^{-\frac{1}{2}} H_2^\frac{1}{2} H_2^{-1} H_1^\frac{1}{2} H_1^\frac{1}{2} H^{-\frac{1}{2}} g_2 \\
\leq \vartheta_1 + \vartheta_2
\] thereby showing that $\vartheta_f \leq \vartheta_1 + \vartheta_2$.

Theorem 5.3 (self-concordant barriers under affine transformation)

Let $A \in \mathbb{R}^{m \times n}$ satisfy $\text{rank} A = n \leq m$. Suppose that $f(\cdot) \in \text{SCB}$ with complexity value ϑ_f, with domain $D_f \subset \mathbb{R}^m$ and define $\hat{f}(\cdot)$ by $\hat{f}(x) = f(Ax - b)$. Then $\hat{f}(\cdot) \in \text{SCB}$ and $\vartheta_f \leq \vartheta_f$.

Proof: Fix $x \in \hat{D}$ and define $s = Ax - b$. Letting g and H denote the gradient and Hessian of $f(s)$ at s and \hat{g} and \hat{H} the gradient and Hessian of $\hat{f}(x)$ at x, we have $\hat{g} = A^T g$ and $\hat{H} = A^T H A$. Then
\[
\hat{g}^T \hat{H}^{-1} \hat{g} = g^T A (A^T H A)^{-1} A^T g = g^T H^{-\frac{1}{2}} H_1^\frac{1}{2} A (A^T H_1^\frac{1}{2} H_2^\frac{1}{2} H_1^{-1} H_2^\frac{1}{2} A)^{-1} A^T H_2^\frac{1}{2} H^{-\frac{1}{2}} g \\
\leq g^T H^{-\frac{1}{2}} H^{-\frac{1}{2}} g = g^T H^{-1} g \leq \vartheta_f
\] since the matrix $H_1^\frac{1}{2} A (A^T H_1^\frac{1}{2} H_2^\frac{1}{2} A)^{-1} A^T H_2^\frac{1}{2}$ is a projection matrix.

Remark 2 The complexity values of the three most-used barriers are as follows:
1. \(\vartheta_f = 1 \) for the barrier \(f(x) = -\ln(x) \) defined on \(D_f = \{ x : x > 0 \} \)

2. \(\vartheta_f = k \) for the barrier \(f(X) = -\ln \det(X) \) defined on \(D_f = \{ X \in S^{k \times k} : X > 0 \} \}

3. \(\vartheta_f = 2 \) for the barrier \(f(x) = -\ln(x_1^2 - \sum_{j=2}^{n} x_j^2) \) defined on \(D_f = \{ x : \| (x_2, \ldots, x_n) \| \leq x_1 \} \)

Proof: Item (1.) follows from item (2.) so we first prove (2.). Recall that for \(f(X) = -\ln \det(X) \) we have \(g(X) = -X^{-1} \) and \(H(X) \Delta X = X^{-1} \Delta X X^{-1} \). Therefore the Newton step at \(X \), denoted by \(n(X) \), is the solution of the following equation:

\[
X^{-1} [n(X)] X^{-1} = X^{-1}
\]

and it follows that \(n(X) = X \). Therefore

\[
\| n(X) \|_X^2 = \text{Tr}([X^{-\frac{1}{2}} [n(X)] X^{-\frac{1}{2}}]^2) = \text{Tr}(I) = k
\]

and therefore \(\vartheta_f = \max_{X > 0} \| n(X) \|_X^2 = k \), which proves (2.) and hence (1.).

In order to prove (3.) we amend our notation a bit, letting \(Q^n = \{ (t, x) \in \mathbb{R}^1 \times \mathbb{R}^{n-1} : \| x \| \leq t \} \). For \((t, x) \in \text{int} Q^n \) we have \(\| x \| < t \) and mechanically we can derive:

\[
g(t, x) = \begin{pmatrix}
-2t \\
t^2 - x^T x
\end{pmatrix}
\]

\[H(t, x) = \begin{pmatrix}
\frac{-2t^2 + 2x^T x}{(t^2 - x^T x)^2} & \frac{-4tx^T}{(t^2 - x^T x)^2} \\
\frac{-2tx^T}{(t^2 - x^T x)^2} & \frac{2(t^2 - x^T x)}{(t^2 - x^T x)^2}
\end{pmatrix}
\]

and the Hessian inverse is given by

\[
H(t, x)^{-1} = \begin{pmatrix}
\frac{t^2 + x^T x}{2} & \frac{tx^T}{2} \\
\frac{t^2 - x^T x}{2} & \frac{t^2 - x^T x}{2} I + xx^T
\end{pmatrix}
\]

Directly plugging in yields

\[
g(t, x)^T H^{-1}(t, x) g(t, x) = 2
\]

from which it follows that \(\vartheta_f = \max_{(t, x) \in Q^n} g(x)^T H(x)^{-1} g(x) = 2 \).
6 The Barrier Method and its Analysis

Our original problem of interest is

\[P : \text{ minimize } c^T x \]
\[\text{ s.t. } x \in S, \]

whose optimal objective value we denote by \(V^* \). Let \(f(\cdot) \) be a self-concordant barrier on \(D_f = \text{int} S \). For every \(\mu > 0 \) we create the barrier problem:

\[P_\mu : \text{ minimize } \mu c^T x + f(x) \]
\[\text{ s.t. } x \in D_f. \]

The solution of this problem for each \(\mu \) is denoted \(z(\mu) \):

\[z(\mu) := \text{arg min}_{x} \{ \mu c^T x + f(x) : x \in D_f \}. \]

Intuitively, as \(\mu \to \infty \), the impact of the barrier function on the solution of \(P_\mu \) should become less and less, so we should have \(c^T z(\mu) \to V^* \) as \(\mu \to \infty \). Presuming this is the case, the barrier scheme will use Newton’s method to solve for approximate solutions \(x^i \) of \(P_{\mu_i} \) for an increasing sequence of values of \(\mu_i \to \infty \).

In order to be more specific about how the barrier scheme might work, let us assume that at each iteration we have some value \(x \in D_f \) that is an approximate solution of \(P_\mu \) for a given value \(\mu > 0 \). (We will define “an approximate solution of \(P_\mu \)” shortly.) We then will increase the barrier parameter \(\mu \) by a multiplicative factor \(\alpha > 1 \):

\[\hat{\mu} \leftarrow \alpha \mu. \]

Then we will take a Newton step at \(x \) for the problem \(P_{\hat{\mu}} \) to obtain a new point \(\hat{x} \) that we would like to then be an approximate solution of \(P_{\hat{\mu}} \). If so, we can continue the scheme recursively.
Let $x \in D_f$ be given, and let us compute the Newton step for P_μ at x. The objective function of P_μ is

$$h_\mu(x) := \mu c^T x + f(x),$$

whereby we have:

- $\nabla h_\mu(x) = \mu c + g(x)$
- $\nabla^2 h_\mu(x) = H(x) = H_x$

Therefore the Newton step for $h_\mu(\cdot)$ at x is:

$$n_\mu(x) := -H_x^{-1}(\mu c + g(x)) = n(x) - \mu H_x^{-1}c$$

and the new iterate is:

$$\hat{x} := x + n_\mu(x) = x - H_x^{-1}(\mu c + g(x)).$$

Remark 3 Notice that $h_\mu(\cdot) \in \mathcal{SC}$, since membership in \mathcal{SC} has only to do with Hessians, and $h_\mu(\cdot)$ and $f(\cdot)$ have the same Hessian. However, membership in \mathcal{SCB} depends also on gradients, and $h_\mu(x)$ and $f(x)$ have different gradients, and $h_\mu(\cdot) \notin \mathcal{SCB}$ (unless $c = 0$).

We now define what we mean for y to be an “approximate solution” of P_μ.

Definition 6.1 Let $\gamma \in [0,1)$ be given. We say that $y \in D_f$ is a γ-approximate solution of P_μ if

$$\|n_\mu(y)\|_y \leq \gamma.$$

Essentially, the above definition states that y is a γ-approximate solution of P_μ if the Newton step for P_μ at y is small (measured using the local norm at y). The following theorem gives an explicit optimality gap bound for y if y is a $\gamma = 1/4$-approximate solution of P_μ.

21
Theorem 6.1 Suppose $\gamma \leq \frac{1}{4}$, and $y \in D_f$ is a γ-approximate solution of P_μ. Then

$$c^T y \leq V^* + \frac{\vartheta_f}{\mu} \left(\frac{1}{1 - \delta} \right)$$

where $\delta = \gamma + \frac{3\gamma^2}{(1-\gamma)^3}$.

Proof: From Theorem 4.1 we know that $z(\mu)$ exists and furthermore

$$\|y - z(\mu)\|_y = \|y + n_\mu(y) - z(\mu) - n_\mu(y)\|_y$$

$$\leq \|y_+ - z(\mu)\|_y + \|n_\mu(y)\|_y$$

$$\leq \frac{3\gamma^2}{(1-\gamma)^3} + \gamma = \delta .$$

From basic first-order optimality conditions we know that $z(\mu)$ satisfies

$$\mu c + g(z(\mu)) = 0$$

and from Theorem 5.1 we have

$$-\mu c^T (w - z(\mu)) = g(z(\mu))^T (w - z(\mu)) < \vartheta_f \quad \text{for all } w \in D_f.$$

Rearranging we have

$$c^T w + \frac{\vartheta_f}{\mu} > c^T z(\mu) \quad \text{for all } w \in D_f,$$
whereby $V^* + \frac{\vartheta_f}{\mu} \geq c^T z(\mu)$. Now for convenience let $z = z(\mu)$ and observe

$$c^T y = c^T z + c^T (y - z)$$

$$\leq V^* + \frac{\vartheta_f}{\mu} + c^T H^{-\frac{1}{2}} H^{-\frac{1}{2}} (y - z)$$

$$\leq V^* + \frac{\vartheta_f}{\mu} + \|H^{-\frac{1}{2}} c\| \|(y - z)\|_z$$

$$\leq V^* + \frac{\vartheta_f}{\mu} + \left(\sqrt{c^T H^{-1} c}\right) \frac{\|(y - z)\|_y}{1 - \|(y - z)\|_y}$$

$$\leq V^* + \frac{\vartheta_f}{\mu} + \left(\sqrt{(g(z)/\mu)^T H^{-1} (g(z)/\mu)}\right) \frac{\delta}{1 - \delta}$$

$$= V^* + \frac{\vartheta_f}{\mu} + \frac{\sqrt{(g(z))^T H^{-1} (g(z))}}{\mu} \frac{\delta}{1 - \delta}$$

$$\leq V^* + \frac{\vartheta_f}{\mu} + \frac{\delta}{1 - \delta}$$

$$\leq V^* + \frac{\vartheta_f}{\mu} \left(1 + \frac{\delta}{1 - \delta}\right)$$

$$= V^* + \frac{\vartheta_f}{\mu(1 - \delta)}.$$

The last inequality above follows from the fact (which we will not prove) that $\vartheta_f \geq 1$ for any $f(\cdot) \in SCB$. ■

Note that with $\gamma = 1/9$ we have $1/(1 - \delta) \leq 6/5$ and $c^T y \leq V^* + 1.2 \vartheta_f / \mu$.

Theorem 6.2 Let $\beta := \frac{1}{4}$, $\gamma := \frac{1}{3}$, and $\alpha := \frac{\sqrt{\beta + \gamma}}{\sqrt{\beta + \gamma}}$. Suppose x is a γ-approximate solution of P_μ. Define $\hat{\mu} := \alpha \mu$, and let \hat{x} be the Newton iterate for $P_{\hat{\mu}}$ at x, namely

$$\hat{x} := x - H(x)^{-1} (\hat{\mu} c + g(x)).$$

Then

1. x is a β-approximate solution of P_μ, and
Barrier Method

Step 1 Initialize.
Define $\gamma := 1/9$, $\beta := 1/4$, $\alpha := \sqrt{\frac{\beta}{\beta+\gamma}}$. Initialize with $\mu_0 > 0$, $x^0 \in D_f$ that is a γ-approximate solution of P_{μ_0}. Set $x \leftarrow x^0$, $\mu \leftarrow \mu_0$, and $i \leftarrow 0$.

Step 2 Increase μ and take Newton step.
$\bar{\mu} \leftarrow \alpha \mu$

$\hat{x} \leftarrow x - H(x)^{-1}(\bar{\mu}c + g(x))$

Step 3 Update counter and repeat.
Set $x \leftarrow \hat{x}$, $\mu \leftarrow \bar{\mu}$, $i \leftarrow i + 1$ and Goto Step 2.

Table 2: The Barrier Method.

2. \hat{x} is a γ-approximate solution of P_{μ}.

Proof: To prove (1.) we have:

$$\|n_{\bar{\mu}}(x)\|_x = \|n_{\alpha \mu}(x)\|_x$$

$$= \|H(x)^{-1}(\alpha \mu c + g(x))\|_x$$

$$= \|\alpha [H(x)^{-1}(\mu c + g(x))] + (1 - \alpha)H(x)^{-1}g(x)\|_x$$

$$\leq \alpha \|H(x)^{-1}(\mu c + g(x))\|_x + (\alpha - 1)\|H(x)^{-1}g(x)\|_x$$

$$\leq \alpha \gamma + (\alpha - 1)\|n(x)\|_x$$

$$\leq \alpha \gamma + (\alpha - 1)\sqrt{\bar{f}} = \beta.$$
To prove (2.) we invoke Theorem 4.1:

\[
\|n_\mu(\hat{x})\|_2 \leq \frac{\|n_\mu(x)\|_2^2}{(1 - \|n_\mu(x)\|_2)^2} \leq \frac{\beta^2}{(1 - \beta)^2} = \frac{1}{9} = \gamma.
\]

Applying Theorem 6.2 recursively we obtain the basic barrier method for self-concordant barriers as presented in Table 2. The complexity of this scheme is presented below.

Theorem 6.3 Let \(\varepsilon > 0 \) be the desired optimality tolerance, and define

\[
J := \left\lceil 9\sqrt{\delta} \ln \left(\frac{6\delta}{5\mu_0\varepsilon} \right) \right\rceil.
\]

Then by iteration \(J \) of the barrier method the current iterate \(x \) satisfies \(c^T x \leq V^* + \varepsilon \).

Proof: With the given values of \(\gamma, \beta, \alpha \) we have \(\delta := \gamma + \frac{2\gamma^2}{(1-\gamma)^2} \) satisfies \(\frac{1}{1-\delta} \leq 6/5 \) and

\[
1 - \frac{1}{\alpha} = \frac{1}{7.2\sqrt{\delta} + 1.8} \geq \frac{1}{9\sqrt{\delta}}.
\]

After \(J \) iterations the current iterate \(x \) is a \(\gamma \)-approximate solution of \(P_\mu \) where \(\mu = \alpha J \mu_0 \). Therefore

\[
\ln \mu_0 - \ln \mu = J \ln \left(\frac{1}{\alpha} \right) \leq J \left(\frac{1}{\alpha} - 1 \right).
\]

Therefore

\[
\ln \mu \geq \ln \mu_0 + J \left(1 - \frac{1}{\alpha} \right) \geq \ln \mu_0 + J \frac{J}{9\sqrt{\delta}} \geq \ln \mu_0 + \ln \left(\frac{6\delta}{5\mu_0\varepsilon} \right) \geq \ln \left(\frac{\delta}{(1-\delta)\varepsilon} \right).
\]

Therefore \(\mu \geq \frac{\delta}{(1-\delta)\varepsilon} \), and from Theorem 6.1 we have

\[
c^T x \leq V^* + \frac{\delta}{\mu(1-\delta)} \leq V^* + \varepsilon.
\]
7 Remarks and other Matters

- Nesterov-Nemirovskii definition of self-concordance
- getting started
- other formats for convex optimization
- \(\vartheta \)-logarithmic homogeneous barriers for cones
- universal barrier
- primal-dual methods
- computational practice
- other self-concordant functions and self-concordant calculus