Exercise 1.

(a) K is not necessarily polyhedral.

(b) First, note that K is indeed a cone, since $(x, t) \in K \Rightarrow (\lambda x, \lambda t)$ for $\lambda \geq 0$. Next, we will show that it satisfies all four properties of a proper cone:

- **Convex:** Consider $(x_1, t_1), (x_2, t_2) \in K$. We will show that $(\alpha x_1 + (1 - \alpha)x_2, \alpha t_1 + (1 - \alpha)t_2) \in K$ for $\alpha \in [0, 1]$. We have:

 $$||\alpha x_1 + (1 - \alpha)x_2|| \leq \alpha||x_1|| + (1 - \alpha)||x_1|| \leq \alpha t_1 + (1 - \alpha)t_2$$

 where the first inequality follows from the triangle inequality for the Euclidean norm and the second inequality follows since $(x_1, t_1), (x_2, t_2) \in K$. We conclude that $(\alpha x_1 + (1 - \alpha)x_2, \alpha t_1 + (1 - \alpha)t_2) \in K$ and, therefore, the set K is convex.

- **Closed:** An alternative definition for cone K is the following: $K = \{(x, t)|t - ||x|| \geq 0\}$. Define function $f(x, t) = t - ||x||$. Function f is continuous as the sum of two continuous functions. Moreover, let $Y = \{y \in \mathbb{R}^m|y \geq 0\}$. Note that cone K is precisely the inverse image of Y, i.e. $\{(x, t)|f(x, t) \in Y\}$. We conclude that K is closed (see Prop. A.7, page 668 of the textbook).

- **Solid:** Consider point $A = (x, t) = (2, \cdots, 2, 100) \in \mathbb{R}^{n+1}$. Obviously, all points that lie in a ball of radius ϵ around A for $\epsilon < 1$ belong to the cone K, therefore the cone is solid.
• Pointed: We need to show that $K \cap (-K) = \{0\}$, i.e. the only point that belongs to the intersection is the origin. Let $(x, t) \in K \cap (-K)$. Then (x, t) satisfies $t \geq ||x||$ and $-t \geq ||-x|| = ||x||$. From those two we conclude that $t = 0$ and $||x|| = 0 \Rightarrow x = 0$.

(c) The dual cone is defined as follows:

$$K^* = \{ (y, s) | (y, s)^T (x, t) \geq 0 \forall (x, t) \in K \}$$

We can write that $(y, s) \in K^*$ satisfies $y^T x + st \geq 0$. From Cauchy-Schwarz we know that

$$|y^T x| \leq ||y|| ||x|| \Rightarrow y^T x \geq -||y|| ||x||$$

So we can write:

$$(y, s) \in K^* \Rightarrow y^T x + st \geq 0 \Rightarrow -||y|| ||x|| + st \geq 0$$

Now note that since $||x|| \leq t$ ($(x, t) \in K$) and $t \geq 0$ we get that $||y|| \leq s$, i.e. $K^* = K$. We conclude that the second-order cone is self dual.

Exercise 2.

(a) Let $z_1, z_2 \in S + T$. We want to show that $\alpha z_1 + (1 - \alpha) z_2 \in S + T$ for $\alpha \in [0, 1]$. First, note that we can write $z_1 = s_1 + t_1$ and $z_2 = s_2 + t_2$, where $s_1, s_2 \in S$ and $t_1, t_2 \in T$, since $z_1, z_2 \in S + T$. Now

$$z_3 = \alpha z_1 + (1 - \alpha) z_2 = \alpha (s_1 + t_1) + (1 - \alpha) (s_2 + t_2) = [\alpha s_1 + (1 - \alpha) s_2] + [\alpha t_1 + (1 - \alpha) t_2] = s_3 + t_3$$

where s_3, t_3 belong to S, T resp. since S, T are convex and, thus, $z_3 \in S + T$. We conclude that $S + T$ is convex.

(b) If S, T are closed and convex then $S + T$ is not necessarily closed. Consider the following counterexample:

$$S = \{(x, y) | xy \geq 1, x \geq 0, y \geq 0\} \text{ and } T = \{(x, y) | x \in \mathbb{R}, y = 0\}$$

It is straightforward to see that both S, T are closed and convex. Furthermore,

$$S + T = \{(x, y) | x \in \mathbb{R}, y > 0\}$$
which is obviously not closed.

- However if S is closed and T is compact, i.e. closed and bounded, then $S + T$ is closed. To show that this true, consider an infinite sequence of points $z_k \in S + T$, which converges to some limit point \bar{z}. We have to show that $\bar{z} \in S + T$. First, note that since points in $\{z^k\}$ belong to $S + T$ they can be written in the form $z_k = s_k + t_k$, where s_k, t_k belong to S, T respectively. In this way we define two sequences $\{s^k\}$ and $\{t^k\}$ of points $\in S, T$ resp., which satisfy that $z_k = s_k + t_k$.

Also note that T is compact, therefore for every infinite sequence of points in T there exists an (infinite) subsequence which converges to a limit point \bar{t}. We can restrict our attention to this subsequence, i.e. consider the z_k's, s_k's and t_k's that correspond to this subsequence and define the sequences $\{z^{k'}\}, \{s^{k'}\}, \{t^{k'}\}$. Now note that the following holds for those sequences $s_{k'} = z_{k'} - t_{k'}$. Furthermore, the right hand side converges to some limit point from continuity and since $\{z^{k'}\}$ converges (as an infinite subsequence of a convergent sequence) and $\{t^{k'}\}$ converges (we consider a convergent subsequence of a sequence of points in a compact set). Moreover the limit point is equal to $\bar{z} - \bar{t}$. However, set S is closed and therefore the limit point of a sequence of points that belong to the set also belongs to the set. We conclude that $\bar{s} = \bar{z} - \bar{t} \in S$ and $\bar{z} = \bar{s} + \bar{t} \in S + T$ since $\bar{s} \in S$ and $\bar{t} \in T$.

Exercise 3.

(a) We will show that f is convex using the standard definition of convexity, i.e. a function f is convex if and only if for every $z_1, z_2 \in \text{dom}(f)$ and every $\alpha \in [0, 1]$

$$f(\alpha z_1 + (1 - \alpha)z_2) \leq \alpha f(z_1) + (1 - \alpha)f(z_2)$$
We have
\[
f(\alpha x_1 + (1 - \alpha)x_2, \alpha t_1 + (1 - \alpha)t_2) = [\alpha t_1 + (1 - \alpha)t_2]g(\frac{\alpha x_1 + (1-\alpha)x_2}{\alpha t_1 + (1-\alpha)t_2})
\]
\[
= [\alpha t_1 + (1 - \alpha)t_2]\left(\frac{\alpha t_1}{\alpha t_1 + (1-\alpha)t_2} x_1 + \frac{(1-\alpha)t_2}{\alpha t_1 + (1-\alpha)t_2} x_2 \right)
\]
\[
\leq [\alpha t_1 + (1 - \alpha)t_2]\left(\frac{\alpha t_1}{\alpha t_1 + (1-\alpha)t_2} g(x_1) + \frac{(1-\alpha)t_2}{\alpha t_1 + (1-\alpha)t_2} g(x_2) \right)
\]
\[
= \alpha f(x_1, t_1) + (1 - \alpha) f(x_2, t_2)
\]

We conclude that \(f(x, t) \) is indeed convex in its domain, i.e. \(\mathbb{R}^n \times \mathbb{R}_{++} \).

(b) We will show that \(f \) is convex using the following definition of convexity: a function \(f \) is convex if it is convex when restricted to any line that intersects its domain, i.e. \(f \) is convex if and only if for all \(x \in \text{dom} f \) and all \(v \), the function \(g(t) = f(x + tv) \) is convex (on its domain, \(\{ t \mid x + tv \in \text{dom} f \} \)).

Consider an arbitrary line that intersects the domain of \(f \), i.e. \(X = Z + tV \), where \(Z \succ 0 \) and \(Z + tV \succ 0 \). We have
\[
g(t) = -\log \det (Z + tV)
\]
\[
= -\log \det (Z^{1/2}(I + tZ^{-1/2}VZ^{-1/2})Z^{1/2})
\]
\[
= -\sum_{i=1}^{n} \log (1 + t\lambda_i) - \log \det Z
\]
where the \(\lambda_i \)'s are the eigenvalues of \(Z^{-1/2}VZ^{-1/2} \). Therefore we have
\[
g'(t) = -\sum_{i=1}^{n} \frac{\lambda_i}{1 + t\lambda_i} \quad \text{and} \quad g''(t) = \sum_{i=1}^{n} \frac{\lambda_i^2}{(1 + t\lambda_i)^2}
\]
Since \(g''(t) \geq 0 \) we conclude that \(f \) is convex.

(c) First, note that since \(u, v \) are strictly positive we can write
\[
f(u, v) = \sum_{i=1}^{n} u_i \ln(\frac{u_i}{v_i}) = \sum_{i=1}^{n} u_i (-\ln(\frac{v_i}{u_i}))
\]
Now note that function \(g(x) = -\ln x \) is convex, so we can use the result of part (a) to conclude that \(f(u, v) \) is convex as the sum of convex functions.

Exercise 5.1.2.

The problem is
\[
\min f(x) = 10x_1 + 3x_2
\]
subject to $5x_1 + x_2 \geq 4$, $x_1, x_2 = 0$ or 1.

(a) See Figure 1.

(b) The Lagrangian function is

$$L(x, \mu) = 10x_1 + 3x_2 + \mu(4 - 5x_1 - x_2)$$

and the dual function is

$$q(\mu) = \inf_{x_1, x_2 \in (0, 1)} L(x, \mu) = 4\mu + (10 - 5\mu)x_1 + (3 - \mu)x_2$$

\[
\begin{cases}
4\mu & \text{if } \mu \leq 2, \\
10 - \mu & \text{if } 2 \leq \mu \leq 3, \\
13 - 2\mu & \text{if } \mu \geq 3,
\end{cases}
\]

(see Figure 2).

(c) From (a), we see that $x^* = (1, 0)$ and $f^* = 10$. From (b), we see that $q^* = 8$. Thus there is a duality gap of $f^* - q^* = 2$ and there is no Lagrange multiplier.

Exercise 5.1.3.
A straightforward calculation yields the dual function as

\[q(\lambda) = \min_x \{ \|z - x\|^2 + \lambda'Ax \} = -\frac{\|A'\lambda\|^2}{4} + \lambda'Az. \]

Thus the dual problem is equivalent to

\[\min_{\lambda} \left\{ \frac{\|A'\lambda\|^2}{4} - \lambda'Az + \|z\|^2 \right\} \]

or

\[\min_{\lambda} \left\| z - \frac{A'\lambda}{2} \right\|^2. \]

This is the problem of projecting \(z \) on the subspace spanned by the rows of \(A \).

Exercise 5.2.2.

Without loss of generality, we may assume that there are no equality constraints, so that the problem is

\[
\text{minimize} \quad f(x)
\]

subject to \(x \in X, \quad a'_j x - b_j \leq 0, \quad j = 1, \ldots, r. \)

Let \(X = C \cap P \), and let the polyhedron \(P \) be described in terms of linear inequalities as

\[P = \{ x \in \mathbb{R}^n \mid a'_j x - b_j \leq 0, \quad j = r + 1, \ldots, p \}, \]
where \(p \) is an integer with \(p > r \). By applying Lemma 5.2.2 with
\[
S = \{ x \in \mathbb{R}^n \mid a'_j x - b_j \leq 0, \ j = 1, \ldots, p \},
\]
and \(F(x) = f(x) - f^* \), we have that there exist scalars \(\mu_i \geq 0, \ j = 1, \ldots, p \), such that
\[
f^* \leq f(x) + \sum_{j=1}^{p} \mu_j (a'_j x - b_j), \quad \forall \ x \in C.
\]
For any \(x \in X \) we have \(\mu_j (a'_j x - b_j) \leq 0 \) for all \(j = r + 1, \ldots, p \), so the above relation implies that
\[
f^* \leq f(x) + \sum_{j=1}^{r} \mu_j (a'_j x - b_j), \quad \forall \ x \in X,
\]
or equivalently
\[
f^* \leq \inf_{x \in X} \{ f(x) + \sum_{j=1}^{r} \mu_j (a'_j x - b_j) \} = q(\mu) \leq q^*.
\]
By using the weak duality theorem (Prop. 5.1.3), it follows that \(\mu \) is a Lagrange multiplier and that there is no duality gap.

In Example 5.2.1, we can set \(C = \{ x \in \mathbb{R}^2 \mid x \geq 0 \} \) and \(P = \{ x \in \mathbb{R}^2 \mid x_1 \geq 0 \} \). Then evidently \(X = C \) and \(f \) is convex over \(C \). However, \(ri(C) = int(C) = \{ x \in \mathbb{R}^2 \mid x > 0 \} \), while every feasible point \(x \) must have \(x_1 = 0 \). Hence no feasible point belongs to the relative interior of \(C \), and as seen in Example 5.2.1, there is a duality gap.

Exercise 5.3.1.

Assume that there exists an \(\bar{x} \in X \) such that \(g_j(\bar{x}) < 0 \) for all \(j \). By Prop. 5.3.1, the set of Lagrange multipliers is nonempty. Let \(\mu \) be any Lagrange multiplier. By assumption, \(-\infty < f^* \), and we have
\[
-\infty < f^* \leq L(\bar{x}, \mu) = f(\bar{x}) + \sum_{j=1}^{r} \mu_j g_j(\bar{x}),
\]
or
\[
-\sum_{j=1}^{r} \mu_j g_j(\bar{x}) \leq f(\bar{x}) - f^*.
\]
We have
\[
\min_{i=1, \ldots, r} \{-g_i(\bar{x})\} \leq -g_j(\bar{x}), \quad \forall \ j,
\]
so by combining the last two relations, we obtain

$$
\left(\sum_{j=1}^{r} \mu_j \right) \min_{i=1,\ldots,r} \left\{ -g_i(\bar{x}) \right\} \leq f(\bar{x}) - f^*.
$$

Since \bar{x} satisfies $g_j(\bar{x}) < 0$ for all j, we have

$$
\sum_{j=1}^{r} \mu_j \leq \frac{f(\bar{x}) - f^*}{\min_{j=1,\ldots,r} \left\{ -g_j(\bar{x}) \right\}}.
$$

Hence the set of Lagrange multipliers is bounded.

Conversely, let the set of Lagrange multipliers be nonempty and bounded. Consider the set

$$
B = \{ z \mid \text{there exists } x \in X \text{ such that } g(x) \leq z \}.
$$

Assume, to arrive at a contradiction, that there is no $\bar{x} \in X$ such that $g(\bar{x}) < 0$. Then the origin is not an interior point of B, and similar to the proof of Prop. 5.3.1, we can show that B is convex, and that there exists a hyperplane whose normal γ satisfies $\gamma \neq 0$, $\gamma \geq 0$, and

$$
\gamma' g(x) \geq 0, \quad \forall x \in X.
$$

Let now μ be a Lagrange multiplier. Using Eq. (1), we have for all $\beta \geq 0$

$$
f^* = \inf_{x \in X} L(x, \mu) \leq \inf_{x \in X} L(x, \mu + \beta \gamma) \leq \inf_{x \in X, g(x) \leq 0} L(x, \mu + \beta \gamma) \leq \inf_{x \in X, g(x) \leq 0} f(x) = f^*,
$$

where the last inequality holds because $\mu + \beta \gamma \geq 0$, and hence $(\mu + \beta \gamma)' g(x) \leq 0$ if $g(x) \leq 0$. Hence, equality holds throughout in the above relation, so $\mu + \beta \gamma$ is a Lagrange multiplier for all $\beta \geq 0$. Since $\gamma \neq 0$, it follows that the set of Lagrange multipliers is unbounded – a contradiction.

Exercise 5.3.3.

For simplicity and without loss of generality, assume that $A(x^*) = \{1, \ldots, r\}$, and denote

$$
h_j(x) = \nabla g_j(x^*)'(x - x^*), \quad \forall j.
$$

By Prop. 5.1.1, $\mu \in M^*$ if and only if x^* is a global minimum of the convex problem

$$
\begin{align*}
\text{minimize} \quad & \nabla f(x^*)'(x - x^*) \\
\text{subject to} \quad & x \in X, \quad h_j(x) \leq 0, \quad j = 1, \ldots, r,
\end{align*}
$$

(1)
while \(\mu \) is a Lagrange multiplier. The feasible directions of \(X \) at \(x^* \) are the vectors of the form \(d = x - x^* \) where \(x \in X \). Hence the assumption that there exists a feasible direction \(d \) with the property described is equivalent to the existence of an \(\bar{x} \in X \) such that \(h_j(\bar{x}) < 0 \) for all \(j \).

If there exists a feasible direction \(d \) with \(\nabla g_j(x^*)'d < 0 \) for all \(j \), then by Prop. 3.3.12, the set \(M^* \) is nonempty. Applying the result of Exercise 5.3.1 to problem (1), we see that the set \(M^* \) is bounded. Conversely, if \(M^* \) is nonempty and bounded, again applying the result of Exercise 5.3.1, we see that there exists \(\bar{x} \in X \) such that \(h_j(\bar{x}) < 0 \) for all \(j \), and hence also there exists a feasible direction with the required property.