Features, Harris Corners and Descriptors

Frédo Durand
MIT EECS 6.815/6.865

Julian Beever

e.g. http://users.skynet.be/J.Beever/
http://www.crystalinks.com/julian_beever.html
Class morph

- [1] As a tipix window -- this starts playing once it loads, but you can stop it and explore it interactively. I think it's pretty nice to explore. http://goo.gl/JMj3Vr

Avoid posting code on piazza
Recap
Manual linear panoramas

• Create a virtual wide angle view from 2 images
• Choose one image as reference
• User gives 4 correspondences
• Deduce homography matrix
• Reproject (warp) second image into first one
Metaphor

- Example of fitting lines, \(x' = ax + b \),
 different pairs of correspondences
 \((x_1 \rightarrow x'_1, \ x_2 \rightarrow x'_2)\) define the same line.
Metaphor

- Example of fitting lines, \(p' = ap + b \), different pairs of correspondences \((p_1 \rightarrow p'_1, p_2 \rightarrow p'_2)\) define the same line.
Under the hood

- Homogenous coordinates
 - encode 2D points with 3 coordinates \((x, y, w)\)
 - represents Euclidean points \((x/w, y/w)\)
 - make it easy to express perspective and to go between 3D and 2D

- Homography
 - 3x3 matrix on homogenous coordinates
 - represent any perspective mapping of a plane
 - to apply a homography to a 2D point \(x, y\):
 compute \(H(x, 1, y)^T\) and divide by third coordinate
Demo

- http://openphotovr.org/edit.html?id=33RwaQHm
- If we change the p', we get a different homography
Homography

- Different sets of \(p, p' \) correspondences can yield the same homography.
Homography

• Different sets of p, p' correspondences can yield the same homography

\[H \]
Beware

- Homographies are defined for the whole plane - just apply the formula!
- But we often only want to apply it inside the rectangle of the input

And as usual, recall forward vs. inverse warp
Multiple images

1. Pick one image (red)
2. Warp the other images towards it (usually, one by one)
3. blend
Homography warp

- For each output pixel
- compute input location with homography matrix
 - \(p' = Hp \), followed by division
- copy pixel color (with appropriate antialiasing)
Forward backward Homography

- To know bbox:
 - Go from corner in source space to output domain
- To make sure we fill all output pixels
 - loop over output pixels => need inverse homography
Later

- Automagic correspondences
 - corner detection
 - patch descriptor

- Nice blending
 - smooth transition
 - 2 scale

- Other projections
 - spherical, cylindrical, miniplanets

http://designedbynatalie.com/tag/panoramas/
Auto stitch
with sparse
features
Automatic panorama

• We need to match (align) images
Matching with Features

- Detect feature points in both images
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images - we know this
Matching with Features

• Problem 1:
 - Detect the *same point* *independently* in both images

counter-example:

no chance to match!
Matching with Features

• Problem 1:
 - Detect the *same point* *independently* in both images

 counter-example:

no chance to match!

We need a repeatable detector
Matching with Features

- Problem 2:
 - For each point correctly recognize the corresponding one
Matching with Features

• Problem 2:

 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor
Discussion

• In this lecture, we’ll seek to derive detectors and descriptors that work perfectly
• But in reality, they will never be 100% perfect
• Next time, we’ll see how we can use the large number of feature points we can extract to reject outliers and get good homographies despite error.
• Plus we will only implement a simplistic detector/descriptor
Preview of pset 7

- Automatically-extracted feature points
Preview of pset 7

- Only a subset of features are matched
- In green are matches determined correct
In a nutshell

• We will replace your manual clicks
• *Detectors* tell us where to click
• *Descriptors* tells us which click in an image corresponds to which one in the other one
• 2NN & RANSAC correct for mistakes
Preview

• Detector: detect same scene points independently in both images
• Descriptor: encode local neighboring window
 - Note how scale & rotation of window are the same in both image (but computed independently)
• Correspondence: find most similar descriptor in other image
Important

• We run the detector and compute descriptors independently in the various images.
• It is only at the end, given a bag of feature points and their descriptors, that we compute correspondences.
• But for the derivation, we will look how the detector and descriptor behave for corresponding scene points, to check for consistency.
Harris corner detector
Harris corner detector

The Basic Idea

• We should easily localize the point by looking through a small window

• Shifting a window in *any direction* should give a *large change* in pixels intensities in window
 – makes location precisely define
Corner Detector: Basic Idea

“flat” region:
no change in all directions
Corner Detector: Basic Idea

“flat” region:
no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions
Corner Detector: Basic Idea

“flat” region:
no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region:
no change in all directions

“edge”:
no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region:
no change in all directions

“edge”:
no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction
Corner Detector: Basic Idea

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Harris Detector: Mathematics

Window-averaged change of intensity induced by shifting the image data by \([u,v]\):

\[
E_y(u,v) = \sum_{x',y'} w(x',y') \left[I(x+x',y+y')^2 - I(x+x'-u,y+y'-v)^2 \right]
\]
Harris Detector: Mathematics

Window-averaged change of intensity induced by shifting the image data by \([u,v]\):

\[
E(u, v) = \sum_{x,y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Window function \(w(x, y)\):
- 1 in window, 0 outside
- Gaussian

or

Intensity

Shifted intensity

Window function

Practical corner detection

• Computing the error for all neighbors is costly
• Let’s derive a more direct criterion

• **Taylor expansions to the rescue!**
 – derive changes in error in neighborhood of pixel
Taylor expansion

1D: \[f(x+u) = f(x) + u f'(x) + \ldots \]

2D: \[f(x+u, y+v) = f(x, y) + \left(\begin{array}{c} u \\ v \end{array} \right) \nabla f \]

\[\left(\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right) = \left(\begin{array}{c} f_x \\ f_y \end{array} \right) \]

scrip means derivative
Taylor expansion

• 1D:

\[I(x + u) = I(x) + uI'(x) + O(u^2) \]

• 2D:

\[I(x + u, y + v) = I(x, y) + \begin{pmatrix} u \\ v \end{pmatrix} \cdot \nabla I(x) + O(u^2 + v^2) \]
Recall full equation:

$E(u,v) = \sum_{x,y} w(x,y)[I(x,y) - I(x+u,y+v)]^2$

Taylor series approximation
\[E(u,v) = \sum w(x,y) \left[I(x,y) + (u) \cdot (\frac{fx}{gs}) + I(x,y) \right] \]

\[= \sum w(x,y) \left[ufx + \sqrt{gs} \right] \]

\[= \sum w(x,y) \left[u^2 f_x^2 + 2uvf_xf_y + v^2 f_y^2 \right] \]

\[\begin{pmatrix} u & v \end{pmatrix} \begin{pmatrix} f_x^2 & f_xf_y & f_y^2 \\ f_xf_u & f_yf_u & f_xf_u \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} \]

\[\text{image gradient} \]
Recall the full equation:

\[I(x, y) + (u, v) \cdot \begin{pmatrix} \frac{2}{f_x^2} & \frac{2}{f_x f_y} \\ \frac{2}{f_x f_y} & \frac{2}{f_y^2} \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}^2 \]

\[\Rightarrow u f_x + v f_y \]

\[\Rightarrow u^2 f_x^2 + 2 uv f_x f_y + v^2 f_y^2 \]
Taylor series approximation to shifted image gives quadratic form for error as function of image shifts.

\[E(u, v) = \sum_{x,y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2 \]

\[I(x + u, y + v) \approx I(x, y) + \begin{pmatrix} u \\ v \end{pmatrix} \cdot \begin{pmatrix} I_x \\ I_y \end{pmatrix} \]

where subscripts denote derivatives

Note: derivatives computed at each x,y
Taylor series approximation to shifted image gives quadratic form for error as function of image shifts.

\[E(u, v) \approx \sum_{x,y} w(x, y) \left[I(x, y) + uI_x + vI_y - I(x, y) \right]^2 \]

\[= \sum_{x,y} w(x, y) [uI_x + vI_y]^2 \]

\[= (u \quad v) \sum_{x,y} w(x, y) \begin{bmatrix} I_xI_x & I_xI_y \\ I_xI_y & I_yI_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

where subscripts denote derivatives

Note: derivatives computed at each \(x,y \)
Harris Detector: Mathematics

Expanding $I(x,y)$ in a Taylor series expansion, we have, for small shifts $[u, v]$, a quadratic approximation to the error surface between a patch and itself, shifted by $[u, v]$:

$$E(u, v) \approx [u, v] M [u \atop v]$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

M is often called structure tensor.
Structure tensor: Stata

- Blue: xx, red: yy, green: xy
Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

\[E(u, v) = \begin{bmatrix} u \\ v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} \]

\[\lambda_1, \lambda_2 - \text{eigenvalues of } M \]

Ellipse \(E(u, v) = \text{const} \)

Iso-intensity contour of \(E(u, v) \)

\((\lambda_{\text{max}})^{-1/2} \) and \((\lambda_{\text{min}})^{-1/2} \)

Direction of the fastest change

Direction of the slowest change
Selecting Good Features

λ_1 and λ_2 are large
Selecting Good Features

Image patch

Error surface

large λ_1, small λ_2
Selecting Good Features

- Image patch (contrast auto-scaled)
- Error surface (vertical scale exaggerated relative to previous plots)

small λ_1, small λ_2
Harris Detector: Mathematics

Classification of image points using eigenvalues of M:
Harris Detector: Mathematics

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions
- $\lambda_1 \gg \lambda_2$, “Edge” region
- $\lambda_2 \gg \lambda_1$, “Corner” region
Harris Detector: Mathematics

Measure of corner response:

\[R = \det M - k \left(\text{trace } M \right)^2 \]

\[\det M = \lambda_1 \lambda_2 \]

\[\text{trace } = \lambda_1 + \lambda_2 \quad (\text{sum of diag elements}) \]
Harris Detector: Mathematics

Measure of corner response:

\[R = \det M - k (\text{trace } M)^2 \]

\[\det M = \lambda_1 \lambda_2 \]

\[\text{trace } M = \lambda_1 + \lambda_2 \]

\((k \text{ – empirical constant, } k = 0.04-0.06)\)
Measure of corner response:

\[R = \det M - k \left(\text{trace } M \right)^2 \]

\[\det M = \lambda_1 \lambda_2 \]
\[\text{trace } M = \lambda_1 + \lambda_2 \]

\((k – \text{empirical constant}, \; k = 0.04-0.06) \)

(Shi-Tomasi variation: use min(\(\lambda_1,\lambda_2\)) instead of R)
Harris Detector: Mathematics

- R depends only on eigenvalues of M
- R is large for a corner
- R is negative with large magnitude for an edge
- $|R|$ is small for a flat region
Harris corner detector algorithm

• Compute image gradients I_x I_y for all pixels

• For each pixel
 – Compute $M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ by looping over neighbors x, y
 – Compute $R = \det M - k \left(\text{trace } M \right)^2$

• Find points with large corner response function R ($R > \text{threshold}$)

• Take the points of locally maximum R as the detected feature points
 (ie, pixels where R is bigger than for all the $k \times k$ neighbors).
Harris Detector: Workflow

Compute corner response R
Harris Detector: Workflow

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
Structure tensor: Stata

- Blue: xx, red: yy, green: xy
Corner response
Harris Detector: Summary

• Average intensity change in direction $[u,v]$ can be expressed as a bilinear form:

$$E(u,v) \equiv [u,v] \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

• Describe a point in terms of eigenvalues of M: measure of corner response

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2 \right)^2$$

• A good (corner) point should have a large intensity change in all directions, i.e. R should be large and positive
Recall: Matching with Features

• Problem 1:
 – Detect the *same* point *independently* in both images

We need a repeatable detector:
DONE FOR NOW
Recall: Matching with Features

• Problem 2:
 – For each point correctly recognize the corresponding one
Recall: Matching with Features

• Problem 2:
 – For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor
Using descriptors

• For each interest point (corner) in first image
• Find most similar in second image

• Similarity defined by descriptor difference

• Goal: descriptor should stay the same around a scene feature when we rotate the camera and take the second image
Questions?
Patch descriptor
In this lecture

Simple

Pixel values in 8x8 pixel neighborhood

Normalize for brightness & contrast
In this lecture

• Simple patch descriptor
 - Describe a corner by the local pixel values
 - Blur a little to reduce effect of sampling
 - Correct for brightness and contrast differences

• Later: more advanced descriptors
Basic idea

- Descriptor = k x k patch
Bells and whistles

- In pset 7, we only use luminance values
- Blur image a little before
 - To reduce sampling/aliasing effects
- Correct for potential brightness/contrast changes
 - e.g. because of exposure, vignetting, clouds
 - Subtract mean
 - normalize by standard deviation
- At the end of the day, a descriptor is $k \times k$ numbers
Descriptor Visualization

- Green = positive, red = negative
Matching descriptors
Status
Status

- We have extracted N1 corners from image 1, and N2 from image 2
- For each corner, we have a kxk descriptor
- The combination of a corner+descriptor is often called a feature point
- Now we need to match feature points from image 1 to image 2
Brute force search

for each corner in image 1

for each corner in image 2

compute difference of sum of square differences of local descriptor values

keep smallest difference
Brute force search

- For each feature point i in image 1
 - scan all feature points j in image 2
 - compute (squared) distance between descriptors i & j
 - i.e. sum of square difference for k×k numbers
 - Keep descriptor with closest distance
Status

• We have a match for each corner of an image
 - But lots of wrong matches
 - Even scene points that are not on the overlap between the images have a match!
Second-Nearest-Neighbor test
Problem

- How do we tell good matches from bad ones?
Naive idea

• If distance is too big, ignore match
Evaluating naive idea

• Using ground truth
 - e.g. user clicks to tell us which corner matches which
• distribution of good vs. bad matches as function of descriptor difference
 - slightly different descriptor from us though, smarter)

- Not a clear threshold
Better idea: Second NN
Better idea: Second NN

- Evaluate ratio of distance to best descriptor to that of second best
- If they are too similar, the match is ambiguous

Figure 11: The probability that a match is correct can be determined by taking the ratio of distance from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints, the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that were incorrect.
Status

- We have feature points
- Matches between two images
 - Most of them are good
 - But not all of them. There can still be error.
 - Next time: RANSAC to remove remaining