6.045 Midterm

Your Name: Scott Aaronson

March 29, 2016

Some Tips:

- **Don’t be a novelist.** Every part of the free-answer questions (except possibly the extra credits) can be answered in a few sentences or less. *If you’re writing paragraph after paragraph, you’re wasting your time!* Your goal is just to show us that you “get it,” not to impress us with your writing skills or attention to detail.

- **Budget your time.** Don’t spend more than about 20 minutes on one problem unless you’ve already finished the others.

- **Try all the problems.** Don’t give up on anything as “obviously too hard,” without at least thinking about it first.

- **Go over your responses in the true/false/open section.** You’d be amazed at the number of careless mistakes people make.

Good luck, and may the power of Turing be with you!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1 (T/F/O)</td>
<td>20 / 20</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td>30 / 30</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td>25 / 25</td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td>30 / 25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105 / 100</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 [20 points, 1 point per statement]: (Proven) True, (Proven) False, or Open—Circle One

(a) T F O The value of \(BB(42) \) is independent of ZF set theory.

(b) T F O \(2\sqrt{n} = \Omega(n\log n) \).

(c) T F O \(3^n = o(2.99^n) \).

(d) T F O \(P = \text{PSPACE} \) implies \(\text{EXP} = \text{EXPSPACE} \).

(e) T F O \(\text{EXP} = \text{EXPSPACE} \) implies \(P = \text{PSPACE} \).

(f) T F O \(\{\text{MAJ}_3, \text{NOT}\} \) is a universal set of Boolean gates (where \(\text{MAJ}_3 \) denotes 3-bit majority).

(g) T F O There is a language \(L \) such that \(L \in \text{TIME}(f(n)) \) implies \(L \in \text{TIME}(\log f(n)) \) for all \(f \).

(h) T F O The set of non-context-free languages has cardinality \(\aleph_0 \).

(i) T F O \(\text{EXPSPACE} \) has cardinality \(\aleph_0 \).

(j) T F O The set of languages that are in \(\text{EXP} \) but not \(\text{PSPACE} \) has cardinality \(\aleph_0 \).

(k) T F O If \(L \) is recognized by an N DFA, then so is \(\overline{L} \).

(l) T F O If \(L \) is recognized by an NPDA, then so is \(\overline{L} \).

(m) T F O If \(L \) is recognized by a DPDA, then so is \(\overline{L} \).

(n) T F O If \(L \) is any uncomputable language, then \(\text{HALT} \leq_T L \).

(o) T F O \(L = \{ \langle M \rangle : M(\langle M \rangle) \text{ halts} \} \) is Turing-equivalent to \(\text{HALT} \).

(p) T F O \(L = \{ \langle M \rangle : M(x) \text{ accepts at least 100 inputs } x \} \) is Turing-equivalent to \(\text{HALT} \).

(q) T F O For all large enough \(n \), there's a Boolean function \(f : \{0,1\}^n \to \{0,1\} \) with no circuit of \(\sqrt{\sqrt{n}} \) \(\text{NAND} \) gates.

(r) T F O: Every circuit containing \(\text{NOT} \) gates computes a non-monotone Boolean function.

(s) T F O: The regular expression \((0|1)^* 1^* \) generates all binary strings.

(t) T F O: Every regular expression that generates infinitely many strings contains a * symbol.
Problem 2 [30 points]: Regular and Context-Free Languages
Consider the language $L = \{x^ay^bz^c : c = a + b\}$.

(a) [5 points] Prove that L is not regular.
(b) [5 points] Prove that L is context-free, by giving a CFG for it.
(c) [5 points] Does your CFG have a unique derivation for every string $w \in L$? If not, is there a different CFG that does?
(d) [5 points] Give a deterministic or nondeterministic pushdown automaton for L.
(e) [5 points] Consider the modified language $L' = \{x^ay^bz^c : c \equiv a + b \pmod{2}\}$. Give a DFA or NDFA for L'.
(f) [5 points] Give a regular expression for L'.

For parts (b), (c), (d), (e), and (f), you don't need to prove your answer.

(a) Even if we consider inputs of the form $x^a y^c$ only (with $b = 0$), we know from class that no DFA can decide if $a = c$. This can be proved using either the Pumping Lemma or the Myhill Lemma.

(b) $S \rightarrow xSZ$.
 $S \rightarrow T$
 $T \rightarrow yTZ$
 $T \rightarrow \lambda$.

(c) Yes, it has unique derivation S.

(d) $\text{push } \#$ $\rightarrow x$ $\text{push } x$ $\rightarrow \varepsilon$ $\text{pop } \#$ $\rightarrow \varepsilon$.

(e)

(f) $(xx)^*(yy)^*(zz)^*$ $\mid (xx)^*x(yy)^*y(zz)^*$ $\mid (xx)^*x(yy)^*x(zz)^*$ $\mid (xx)^*(yy)^*y(zz)^*$ $\mid (xx)^*(yy)^*x(zz)^*$.
(Blank page for continuing your answers to Problem 2)
(d) The conversion from $M \leftrightarrow M'$ constitutes a reduction from HALT to L_F. I.e., if $(M) \in \text{HALT}$ then $(M') \in L_F$ and if $(M) \in \text{HALT}$ then $(M') \notin L_F$. Here L_F is uncomputable.

Problem 3 [25 points]: Provable Loopers

Let F be a formal system powerful enough to reason about arithmetic and Turing machines, such as ZF set theory. You can assume that F is sound. Now consider the language that consists of all encodings of Turing machines that not only run forever, but provably run forever:

$$L_F = \{(M) : F \text{ proves that } M(\) \text{ runs forever}\}.$$

(Here, as usual, $M(\)$ means M run on a blank input.)

(a) [5 points] Prove that $L_F \leq_T \text{HALT}$.

(b) [5 points] Give an example of an input on which L_F differs from HALT (where, for concreteness, $\text{HALT} = \{(M) : M(\) \text{ halts}\}$). In other words: verbally describe a Turing machine Z that runs forever on a blank input, but that F can’t prove runs forever—and for which we therefore have $(Z) \in \text{HALT}$ but $(Z) \notin L_F$.

(c) [10 points] Given any Turing machine M, explain how to build a new machine M' with the following interesting properties:

- If $M(\)$ halts, then $M'(\)$ runs forever, and moreover F proves that $M'(\)$ runs forever.
- If $M(\)$ runs forever, then $M'(\)$ might or might not run forever—but at any rate, F doesn’t prove that $M'(\)$ runs forever.

[Hint: You’ll want your machine Z from part (b), and the step-by-step simulation of M, as two ingredients in building M'.]

(d) [5 points] Assuming part (c), show that L_F is uncomputable, and indeed, is Turing-equivalent to HALT.

(i) We can construct a TM M' that enumerates all the theorems of F, halting iff it finds a proof that $M(\)$ runs forever. Then by deciding whether $M'(\)$ halts, we also decide whether F proves that $M(\)$ runs forever.

(ii) Let Z be a machine that enumerates all the theorems of F, halting iff it finds a proof of $\theta \equiv 0$, then $Z(\)$ runs forever (since F is sound), but F can’t prove $Z(\)$ runs forever since otherwise F would prove its own consistency, violating the 2^{nd} incompleteness theorem. Hence $(Z) \in \text{HALT}$ but $(Z) \notin L_F$.

(iii) We alternate between simulating $M(\)$ and simulating $Z(\)$.

If $Z(\)$ ever halts (finds an inconsistency in F), then we halt.

If $M(\)$ ever halts, then we go into a trivial infinite loop.

Result: If $M(\)$ halts, then F can simulate $M'(\)$ step-by-step until $M'(\)$ halts and thereby prove that $M'(\)$ runs forever.

If $M(\)$ runs forever, then $M'(\)$ runs forever iff F is consistent (and F proves this). So F can’t prove $M'(\)$ runs forever without proving its own consistency.
Problem 4 [25 points]: Resource-Bounded Kolmogorov Complexity

Given a string \(x \in \{0,1\}^* \), recall that \(K(x) \) is the number of bits in the shortest program \(P \) such that \(P(\cdot) = x \); that is, the shortest program that, when given a blank input, halts in finite time and outputs \(x \). (Here and throughout, we fix any reasonable programming language, and consider only programs written in that language.)

Now, given a function \(f \), let \(K_{\text{TIME}}(f(n)) (x) \) be the number of bits in the shortest program \(P \) such that \(P(\cdot) = x \) and \(P(\cdot) \) halts after at most \(f(|x|) \) time steps. Likewise, let \(K_{\text{SPACE}}(f(n)) (x) \) be the number of bits in the shortest program \(P \) such that \(P(\cdot) = x \) and \(P(\cdot) \) having used at most \(f(|x|) \) bits of memory. In what follows, we’ll fix \(f(n) = n^3 \) for the sake of concreteness.

(a) [5 points] Sort the following complexities in order from least to greatest (not necessarily via strict inequalities): \(K_{\text{TIME}}(n^2) (x) \), \(K_{\text{TIME}}(2n^2) (x) \), \(K_{\text{SPACE}}(n^2) (x) \), \(K(n) \). Give a sentence or so of justification for why the stated inequalities hold.

(b) [5 points] We saw in class that \(K(x) \) is uncomputable. By contrast, explain how to compute \(K_{\text{TIME}}(n^2) (x) \) in \(2^{n^2} O(1) \) time.

(c) [5 points] Likewise, explain how to compute \(K_{\text{SPACE}}(n^2) (x) \) in \(O(n^2) \) space.

(d) [10 points] Show that more running time can yield better data compression: more concretely, there exists a positive integer \(n \), and a string \(x \in \{0,1\}^n \), such that \(K_{\text{TIME}}(n^2) (x) < K_{\text{TIME}}(n^2) (x) \). [Hint: This is equivalent to ruling out the possibility that \(K_{\text{TIME}}(n^2) (x) = K_{\text{TIME}}(n^2) (x) \) for every \(x \). Supposing that equality held, can you use part (b) to derive a contradiction, analogously to how we proved in class that \(K(x) \) is uncomputable? Note that \(5^n \) is just meant to be a generous upper bound on the running time needed.]

(e) [5 points, extra credit] Show that actually, there exists a positive integer \(n \), and a string \(x \in \{0,1\}^n \), such that \(K_{\text{TIME}}(n^2 + 1) (x) < K_{\text{TIME}}(n^2) (x) \).

\(k \) (c)

\(k \) (b)

\(k \) (a)

\(k \) (d)

\(k \) (e)

\(k \) (f)

\(k \) (g)

\(k \) (h)

\(k \) (i)

\(k \) (j)

\(k \) (k)

\(k \) (l)

\(k \) (m)

\(k \) (n)

\(k \) (o)

\(k \) (p)

\(k \) (q)

\(k \) (r)

\(k \) (s)

\(k \) (t)

\(k \) (u)

\(k \) (v)

\(k \) (w)

\(k \) (x)

\(k \) (y)

\(k \) (z)
Suppose by contradiction that $\text{KTime}(n^2)(x) = \text{KTime}(\eta^3)(x)$ for all x. Now consider the following program, call it Q, that finds a string $x \in \{0,1\}^n$ s.t. $\text{KTime}(n^2)(x) > 101$ (since $101 < \log(n) + O(1)$ and Q takes ≤ 101 time), until it finds an $x \in \{0,1\}^n$ s.t. $p(\gamma) \neq x$ for all p of length $\leq n/2$. This Q clearly takes $2^n 2^{n/2} n^{O(1)} = 2^{3n/2} n^{O(1)}$ time and it clearly finds an $x \in \{0,1\}^n$ such that $\text{KTime}(n^2)(x) > \frac{n}{2}$. By assumption, then, $\text{KTime}(n^2)(x) \leq \log(n) + O(1)$ (since $101 < \log(n) + O(1)$ and Q takes ≤ 101 time), which is less than $\frac{n}{2}$ for all sufficiently large n's! This is a contradiction, so we cannot have had $\text{KTime}(n^2)(x) = \text{KTime}(\eta^3)(x)$ for all x.

Suppose w.o.c. that $\text{KTime}(\eta^3)(x) = \text{KTime}(\eta^2)(x)$ for all x. Then in part (1), we can simply modify Q so that it searches for an $x \in \{0,1\}^n$ with $\text{KTime}(\eta^3)(x) > 3\log\log n$. Clearly such an x exists, and it takes $\eta^{2+O(1)} 2^{3\log\log n} 2^{3\log\log n} \eta^{2\log n} = \eta^{2+O(1)}$ time to find, much less than $\eta^{2+O(1)}$. But if (for example) η is a power of 2, then $\text{KTime}(\eta^3)(x) = \log\log n + O(1)$, which is less than $3\log\log n$ for all sufficiently large n. So then this can't be equal to $\text{KTime}(n^2)(x)$.