Orthogonal Range Queries

Piotr Indyk
Range Searching in 2D

• Given a set of n points, build a data structure that for any query rectangle R, reports all points in R
Kd-trees [Bentley]

• Not the most efficient solution in theory
• Everyone uses it in practice
• Algorithm:
 – Choose x or y coordinate (alternate)
 – Choose the median of the coordinate; this defines a horizontal or vertical line
 – Recurse on both sides
• We get a binary tree:
 – Size: $O(N)$
 – Depth: $O(\log N)$
 – Construction time: $O(N \log N)$
Kd-tree: Example

Each tree node \(v \) corresponds to a region \(\text{Reg}(v) \).
Kd-tree: Range Queries

1. Recursive procedure, starting from \(v = \text{root} \)

2. Search \((v,R)\):
 a) If \(v \) is a leaf, then report the point stored in \(v \) if it lies in \(R \)
 b) Otherwise, if \(\text{Reg}(v) \) is contained in \(R \), report all points in the subtree of \(v \)
 c) Otherwise:
 • If \(\text{Reg(left}(v)) \) intersects \(R \), then Search\((\text{left}(v),R)\)
 • If \(\text{Reg(right}(v)) \) intersects \(R \), then Search\((\text{right}(v),R)\)
Query demo

How much time does this take?
Query Time Analysis

• We will show that Search takes at most $O(n^{1/2}+P)$ time, where P is the number of reported points

 – The total time needed to report all points in all sub-trees (i.e., taken by step b) is $O(P)$

 – We just need to bound the number of nodes v such that $\text{Reg}(v)$ intersects R but is not contained in R. In other words, the boundary of R intersects the boundary of $\text{Reg}(v)$
 • Note that v can be internal or a leaf

 – Will make a gross overestimation: will bound the number of $\text{Reg}(v)$ which are crossed by any of the 4 horizontal/vertical lines
Query Time Continued

• What is the max number $Q(n)$ of regions in an n-point kd-tree intersecting (say, vertical) line?
 – If we split on x, $Q(n)=1+Q(n/2)$
 – If we split on y, $Q(n)=1+2\times Q(n/2)$
 – Since we alternate, we can write $Q(n)=2+2Q(n/4)$

• This solves to $O(n^{1/2})$
Analysis demo
A Faster Solution

- Query time: $O(\log^2 n + P)$
- Space: $O(n \log n)$
Idea I: Ranks

• Sort x and y coordinates of input points

• For a rectangle \(R=[x_1,x_2] \times [y_1,y_2] \), we have point \((u,v) \in R\) iff

 - \(\text{succ}_x(x_1) \leq \text{rank}_x(u) \leq \text{pred}_x(x_2) \)

 - \(\text{succ}_y(y_1) \leq \text{rank}_y(v) \leq \text{pred}_y(y_2) \)

• Thus we can replace

 - Point coordinates by their rank

 - Query boundaries by succ/pred; this adds \(O(\log n) \) to the query time
Dyadic intervals

• Assume n is a power of 2. Dyadic intervals are:
 – $[1,1]$, $[2,2]$ … $[n,n]$
 – $[1,2]$, $[3,4]$ … $[n-1,n]$
 – ….
 – $[1…n]$

• Any interval $\{a…b\}$ can be decomposed into $O(\log n)$ dyadic intervals:
 – Imagine a full binary tree over $\{1…n\}$
 – Each node corresponds to a dyadic interval
 – Any interval $\{a…b\}$ can be “covered” using $O(\log n)$ sub-trees
Detailed recipe of the decomposition

• Let A be a path from a to the root and B be the path from b to the root
• Let v be the node where A and B diverge, i.e., the lowest node v that belongs to both A and B. Note that left(v) is in A, while right(v) is in B
 – Note that v could be the root
• Let A’ be the path v…a, and B’ be the path v…b
• Create the decomposition
 – Include a and b
 – For each node u in A’:
 • If u is a left child of its parent, include its sibling
 – For each node u in B’:
 • If u is a right child of its parent, include its sibling
• Note that the above decomposition might not have the minimum size, but it has size $O(\log n)$
Range Trees

- For each level $l=1\ldots\log n$, partition x-ranks using level-l dyadic intervals
- This induces vertical strips
- Within each strip, construct a balanced BST on y-coordinates
Range Trees
Range Trees
Analysis

• Each point occurs in $\log n$ different levels
• Space: $O(n \log n)$
• How do we implement the query?
Query procedure

- Consider query $R = X \times Y$
- Partition X into dyadic intervals
- For each interval, query the corresponding strip BST using Y
Query procedure
Query procedure
Analysis ctd.

• Query time:
 – $O(\log n + \text{output})$ time per strip
 – $O(\log n)$ strips
 – Total: $O(\log^2 n + P)$

• Faster than kd-tree, but space $O(n \log n)$

• Recursive application of the idea gives
 – $O(\log^d n)$ query time
 – $O(n \log^{d-1} n)$ space

for the d-dimensional problem