Algorithms for streaming data (mostly via embeddings)

Piotr Indyk
Streaming Data

- Problems defined over points $P=\{p_1, \ldots, p_n\}$
- The algorithm sees p_1, then p_2, then p_3, ...
- Key fact: it has limited storage
 - Can store only $s << n$ points
Example - diameter
Problems

• Diameter
• Minimum enclosing ball
Diameter in l^d_{∞}

• Assume we measure distances according to the l_{∞} norm
• How can we compute it in the streaming model?
• Actually, how can we compute it efficiently?

\[
\max_{p,q \in P} \| p - q \|_{\infty} = \max_{p,q \in P} \max_{i=1,\ldots,d} |p_i - q_i| = \max_{i=1,\ldots,d} \max_{p,q \in P} |p_i - q_i| = \max_{i=1,\ldots,d} \left[\max_{p \in P} p_i - \min_{p \in P} p_i \right]
\]
Diameter in l_∞, streaming

- From the definition
 \[\text{Diam}_\infty(P) = \max_{i=1 \ldots d} \left[\max_{p \in P} p_i - \min_{p \in P} p_i \right] \]
- Can maintain max/min in constant space
- Total space = $O(d)$
- What about l_1?
Consider \(d=2 \)

- Define:
 \[
 f(x,y) = [x+y, x-y, -x+y, -x-y]
 \]
 - Since \(f \) linear, we have \(||f(p)-f(q)|| = ||f(p-q)|| \)
 - \(||(x,y)||_1 = |x|+|y| = \max[x+y, x-y, -x+y, -x-y] \)

- \(f \) is an **isometric** embedding of \(l^2_1 \) into \(l^4_\infty \)
The mapping f is defined as

$$f(p) = (s_0 \cdot p, s_1 \cdot p, \ldots, s_{2^d-1} \cdot p)$$

where s_i is the i^{th} vector in $\{-1, 1\}^d$. Then

$$\|f(p) - f(q)\|_\infty = \|f(p - q)\|_\infty = \max_s |s \cdot (p - q)| = |p_1 - q_1| + \ldots + |p_d - q_d| = \|p - q\|_1$$

• f is an **isometric** embedding of l^d_1 into $l^{2^d}_\infty$
Diameter in l_1

- Let $f : l_1^d \rightarrow l_\infty^{2^d}$ be an isometric embedding.
- We will maintain $\text{Diam}_\infty(f(P))$.
 - For each point p, we compute $f(p)$ and feed it to the previous algorithm.
 - Return the pair p,q that maximizes $||f(p)-f(q)||_\infty$.
- This gives $O(2^d)$ space for l_1^d.
- What about l_2?
(1+\(\varepsilon\))-embedding of \(l^d_2\) into \(l^{d'}_\infty\)

- (1+\(\varepsilon\))-embedding:
 - No expansion
 - Contraction by at most 1+\(\varepsilon\)

- We will achieve \(d'\) equal to \(O(1/\varepsilon)^{(d-1)/2}\)
- Let’s start from \(d=2\)
Embedding of l_2 into l_∞

• Again, use projections
 – Onto unit (l_2) vectors $v_1 \ldots v_k$
 – Requirement: vectors are “densely” spaced:
 for any u there is v_i such that
 \[u^*v_i \geq ||u||_2 / (1+\varepsilon) \]
 – This implies $(1+\varepsilon)$ distortion
 • No expansion
 • Contraction by at most $1+\varepsilon$

• How big is k?
 – Can assume $||u||_2=1$

5/10/18
Lemma

• Consider two unit vectors u and v, such that the $\angle(u, v) = \alpha$.

Then $u \cdot v \geq 1 - \Theta(\alpha^2)$

• Proof: $u \cdot v = \cos(\alpha) = 1 - \Theta(\alpha^2)$

• Therefore, suffices to use $2\pi/\epsilon^{1/2}$ vectors to get distortion $1 + \Theta(\epsilon)$

• The mapping $f(p) = (v_1 \cdot p, v_2 \cdot p, \ldots, v_k \cdot p)$ is a $(1 + \epsilon)$ distortion embedding of l^2_2 into $l^{\Theta(1/\epsilon^{1/2})}_\infty$.

5/10/18
Higher Dimensions

- For $d=2$ we get $d' = O(1/\varepsilon^{1/2})$
- For any d we get $d' = O_d(1/\varepsilon)^{(d-1)/2}$
 - Can “cover” a unit sphere in \mathbb{R}^d with $O_d(1/\alpha)^{d-1}$ vectors so that any v has angle $<\alpha$ with at least one of the vectors
 - The remainder is the same

5/10/18
Covering vs Packing

• Assume we want to **cover** the sphere using disks of radius α

• This can be achieved by **packing** , as many as possible, disks of radius $\alpha/2$

• How many disks can be pack ?
 – Each disk has volume $\Theta_d(\alpha/2)^{d-1}$ times smaller than the volume of the sphere
 – Inverse of that gives the packing/covering bound
Diameter in l_2

- Let $f: l_2^d \rightarrow l_\infty^{d'}$, $d' = O(1/\varepsilon)^{(d-1)/2}$, be a $(1+\varepsilon)$-distortion embedding
- Apply the same algorithm as before
- Space: $O(1/\varepsilon)^{(d-1)/2}$
Minimum Enclosing Ball

• Problem: given $P=\{p_1 \ldots p_n\}$, find center o and radius $r>0$ such that
 – $P \subseteq B(o,r)$
 – r is as small as possible

• Solve the problem in l_∞

• Generalize to l_1 and l_2 via embeddings
MEB in l_∞

- Let C be the hyper-rectangle defined by max/min in every dimension.
- Easy to see that min radius ball $B(o,r)$ is a min size hypercube that contains C.
- Min radius = min hypercube side length/2.
- How to solve it in l_2?
MEB in l_2

• Let $f: l_2^d \rightarrow l_\infty^{d'}$ be an embedding as before:
 – No expansion
 – Contraction by at most $1+\varepsilon$

• Attempt I:
 – Maintain $\text{MEB}_\infty B'(o',r)$ of $f(p_1)\ldots f(p_n)$
 – Compute o such that $f(o)=o'$
 – Report o
Problem

• There might be NO o such that $f(o)=o'$

• The problem is that f is into, not onto
The Correct Version

• Attempt II:
 – Maintain the min/max points $f(p_1)\ldots f(p_{2d'})$, two points per dimension
 – Compute MEB $B(o,r)$ of $p_1\ldots p_{2d'}$
 – Report o
Correctness

MEB radius for P

$= \text{Min } r \text{ s.t. } \exists o \ P \subseteq B(o,r) \ (\text{by definition})$

$\leq (1+\varepsilon) \text{Min } r' \text{ s.t. } \exists o \ f(P) \subseteq B(f(o),r')$

(contraction by at most $1+\varepsilon$)

$= (1+\varepsilon) \text{Min } r' \text{ s.t. } \exists o \ \{f(p_1)\ldots f(p_{2d'})\} \subseteq B(f(o),r')$

(a set of points $f(P)$ is contained in a hypercube iff the extreme points of $f(P)$ are contained in that hypercube)

$\leq (1+\varepsilon) \text{Min } r \text{ s.t. } \exists o \ \{p_1\ldots p_{2d'}\} \subseteq B(o,r)$

(no expansion of f)

$= (1+\varepsilon) \text{MEB radius for } \{p_1\ldots p_{2d'}\}$
Digression: Core Sets

• In the previous slide we use the fact that in l_∞, for any set P of points, there is a subset P' of P, $|P|=2d'$, such that
 \[\text{MEB}(P')=\text{MEB}(P) \]
• P' is called a “core-set” for the MEB of P in l_∞
• For more on core-sets, see the web page by Sariel Har-Peled