Problem Set 2, Part a

Due: Thursday, October 3, 2013
Problem sets will be collected in class. Please hand in each problem on a separate page.

Readings:
Section 5.1, Chapter 6 of Distributed Algorithms
Aguilera, Toueg paper, listed in Handout 3
Keidar, Rajsbaum paper (skim)

For next week: Chapter 7 (skim 7.2); Chapter 8.

Problems:

1. Exercise 5.2.

2. Modify the FloodSet algorithm of Section 6.2.1 by adding a local stopping condition, in order to obtain the following additional early decision time bound property:
 If the execution has only $f' \leq f$ failures, then all nonfaulty processes decide (but don’t halt) by the end of round $f' + 2$.
 Prove that your algorithm works, that is, that it solves the stopping agreement problem for stopping failures, and that it has the additional time bound property.
 Note: Recall that we require the uniformity property, which says that all processes that decide (even if they later fail), decide on the same value.
 Hint: Try to use the following stopping condition:
 At the end of round r, each process i decides, based on its set W_i, if the following conditions are satisfied:
 (a) the set of messages W_i at the end of round r is the same as the set of messages W_i at the end of round $r - 1$, and
 (b) the set of processes from which i received messages in round r is the same as the set of processes from which i received messages in round $r - 1$.

3. Section 6.3.3 contains a simple algorithm (TurpinCoan) for Byzantine agreement on an arbitrary value domain V. This algorithm uses a Byzantine agreement algorithm for bits as a “subroutine”. At the cost of two extra rounds, this algorithm manages to substantially reduce the bit complexity, over the standard Exponential Information Gathering Byzantine Agreement algorithm for V.
 (a) Read the description of this algorithm, and its correctness proof.
 (b) Do Exercise 6.22, which asks you to generalize the algorithm slightly.

5. Exercise 6.45.