Lecture 4
Modeling Biological Sequences using Hidden Markov Models

Module 1: Aligning and modeling genomes

- Module 1: Computational foundations
 - Dynamic programming: exploring exponential spaces in poly-time
 - Linear-time string matching, Hashing, Content-based indexing
 - Hidden Markov Models: decoding, evaluation, parsing, learning
- Last week: Sequence alignment / comparative genomics
 - Local/global alignment: infer nucleotide-level evolutionary events
 - Database search: scan for regions that may have common ancestry
- This week: Modeling genomes / exon / CpG island finding
 - Modeling class of elements, recognizing members of a class
 - Application to gene finding, conservation islands, CpG islands

We have learned how to align sequences to other sequences

- L2: Sequence alignment
 - Dynamic programming, duality path ⇆ alignment
 - Global / local alignment, general gap penalties
- L3: Rapid string search
 - Exact string match, semi-numerical matching
 - Database search: Hashing, BLAST, variations
- L15: Comparative genomics: evolutionary signatures
 - Tell me how you evolve, I’ll tell you what you are
 - Identifying conserved elements through evolution
- L16: Whole-genome assembly/alignment/duplication:
 - Finding all common substrings within/across species
 - Contigs/scaffolds, string graphs, glocal alignment paths
- Problem set 1, project planning, Problem set 2 out

Today: apply these ideas to model DNA sequences...

- GTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT...

Modeling biological sequences with HMMs
(a.k.a. What to do with big unlabeled chunks of DNA)

- What to do with a completely new piece of DNA
 - Align it to things we know about (database search)
 - Align it to things we don’t know about (assembly)
- Stare at it
 - Non-standard nucleotide composition?
 - Interesting k-mer frequencies?
 - Recurrent patterns?
- Model it
 - Make some hypotheses about it
 - Build a ‘generative model’ to describe it
 - Find sequences of similar type

How do we model DNA sequences?

- Ability to emit DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving ‘properties’ of type, not identical sequence
- Ability to recognize DNA sequences of a certain type (state)
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to learn distinguishing characteristics of each state
 - Training our generative models on large datasets
 - Learn to classify unlabelled data
Why Probabilistic Sequence Modeling?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers -- can provide "degrees of belief"
- Many common computational tools based on probabilistic models
 - Our tools:
 - Markov Chains and Hidden Markov Models (HMMs)

Markov Chains and Hidden Markov Models

Predicting tomorrow’s weather

- Markov Chain
- Hidden Markov Model

Components of a Markov Chain

Definition: A Markov chain is a triplet \((Q, p, A)\), where:
- \(Q\) is a finite set of states. Each state corresponds to a symbol in the alphabet \(\Sigma\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t \in Q\).
 - For each \(s, t \in Q\) the transition probability is: \(a_{st} = P(x_t = t | x_{t-1} = s)\)

Output: The output of the model is the set of states at each instant time \(\Rightarrow\) the set of states are observable

Property: The probability of each symbol \(x_t\) depends only on the value of the preceding symbol \(x_{t-1}\):
\[
P(x_t | x_{t-1}, \ldots, x_1) = P(x_t | x_{t-1}) \prod_{j=1}^{t-1} P(x_j | x_{j-1})
\]

Formula: The probability of the sequence:
\[
P(x) = P(x_1, x_2, \ldots, x_N) = P(x_1) P(x_2 | x_1) P(x_3 | x_2) \ldots P(x_N | x_{N-1})
\]

Components of an HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple \((Q, V, p, A, E)\), where:
- \(Q\) is a finite set of states, \(|Q| = N\)
- \(V\) is a finite set of observation symbols per state, \(|V| = M\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t \in Q\).
 - For each \(s, t \in Q\) the transition probability is: \(a_{st} = P(x_t = t | x_{t-1} = s)\)
- \(E\) is a probability emission matrix, \(e_{sk} = P(v_t = k | x_t = s)\)

Output: Only emitted symbols are observable by the system but not the underlying random walk between states \(\Rightarrow\) "hidden"

Property: Emissions and transitions are dependent on the current state only and not on the past.
The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>Scoring</th>
<th>Decoding</th>
<th>Learning</th>
</tr>
</thead>
</table>
| 1. Scoring x, one path
\[P(x, \pi) \]
Prob of a path, emissions | 3. Viterbi decoding
\[\pi^* = \arg \max_{\pi} P(x, \pi) \]
Most likely path | 5. Supervised learning, given \(\pi \)
\[\Lambda^* = \arg \max_{\lambda} P(x, \pi|\lambda) \] | 1. Scoring x, all paths
\[P(x) = \sum_{\pi} P(x, \pi) \]
Prob of emissions, over all paths | 6. Unsupervised learning
\[\Lambda^* = \arg \max_{\lambda} \max_{\pi} P(x, \pi|\lambda) \]
Viterbi training, best path |

Examples of HMMs

The dishonest casino
The dishonest genome
... and many more

Example: The Dishonest Casino

A casino has two dice:
- Fair die
 \[P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 \]
- Loaded die
 \[P(1) = P(2) = P(3) = P(5) = 1/10 \]
 \[P(6) = 0.5 \]

Casino player switches between fair and loaded die on average once every 20 turns.

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $2

The dishonest casino model

Observed (world)

Hidden (model)

Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology / Transitions</td>
<td>2 states, different nucleotide composition</td>
<td>2 states, different conservation levels</td>
<td>2 states, different tri-nucleotide composition</td>
<td>2 states, different evolutionary signatures</td>
<td>~20 states, different composition/conservation, specific structure</td>
<td>40 states, different chromatin mark combinations</td>
</tr>
<tr>
<td>Hidden States / Annotation</td>
<td>GC-rich / AT-rich</td>
<td>Conserved / non-conserved Coding exon / non-coding (intron or intergenic) Coding exon / non-coding (intron or intergenic) First/last/middle coding exon, UTRs, intron1/2/3, intergenic, (+/- strand)</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions / Observations</td>
<td>Nucleotides Level of conservation Triplet of nucleotides 64x64 matrix of codon substitution frequencies Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the joint probability of observing \(x \) and a specific path \(\pi \):
\[
P(\pi, x) = P(x|\pi)P(\pi) = P(\text{emissions} | \pi)P(\pi)
\]
and rolls
\[
x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
\]
Joined probability
\[
P(x, \pi) = \frac{1}{6} \times P(1 | \text{Fair}) P(\text{Fair} | 1) P(2 | \text{Fair}) P(\text{Fair} | 2) ... P(4 | \text{Fair}) = \frac{1}{6} \times (\frac{1}{10})^9 \times (0.95)^9 = 0.5 \times 10^{-9}
\]
Why is \(p \) so small?

Likelihood ratio:
\[
P(\pi, \text{all-Fair}) = 6.59 \times 10^{-10} \quad \text{(very very small)}
\]

It is 6.59 times more likely that the die is fair all the way, than loaded all the way.

Model comparison

Let the sequence of rolls be:
\[
x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6
\]
Now, what is the likelihood \(\pi = F, F, ..., F \)?
\[
\frac{1}{6} \times (\frac{1}{10})^9 \times (0.95)^9 = 0.5 \times 10^{-9} \quad \text{same as before}
\]
What is the likelihood \(\pi = L, L, ..., L \)?
\[
\frac{1}{2} \times (\frac{1}{10})^9 \times (\frac{1}{2})^6 \times (0.95)^9 = 0.5 \times 10^{-7}
\]
So, it is 100 times more likely the die is loaded.

The six algorithmic settings for HMMs

One path

1. Scoring \(x \), one path
 \[P(x, \pi)\]
 Prob of a path, emissions

2. Scoring \(x \), all paths
 \[P(x) = \sum_{\pi} P(x, \pi)\]
 Prob of emissions, over all paths

3. Viterbi decoding
 \[\pi^* = \text{argmax}_\pi P(x, \pi)\]
 Most likely path

4. Posterior decoding
 \[\pi^* = \{\pi_i | \pi_i = \text{argmax}_\pi \sum \pi P(\pi | x)\}\]
 Path containing the most likely state at any time point.

All paths

5. Supervised learning, given \(\pi \)
 \[\Lambda^* = \text{argmax}_\lambda \sum \pi P(\pi | \lambda)\]
 Viterbi training, best path

6. Unsupervised learning
 \[\Lambda^* = \text{argmax}_\lambda \sum P(\pi | \lambda)\]
 Baum-Welch training, over all paths

Running the model: Probability of a sequence

Comparing the two paths

What about partial runs and die switching

The six algorithmic settings for HMMs

Model evaluation
3. DECODING:
What was the sequence of hidden states?

Given: Model parameters $e_i(\cdot), a_{ij}$
Given: Sequence of emissions x
Find: Sequence of hidden states π

Finding the optimal path

- We can now evaluate any path through hidden states, given the emitted sequences
- How do we find the best path?
- Optimal substructure! Best path through a given state is:
 - Best path to previous state
 - Best transition from previous state to this state
 - Best path to the end state

\rightarrow Viterbi algorithm
 - Define $V_i(i) =$ Probability of the most likely path through state $\pi=i$
 - Compute $V_i(i+1) =$ as a function of $\max \{ V_i(i) \}$
 - $V_i(i+1) = e_i(x_{i+1}) \times \max_j a_{ij} V_j(i)$

\rightarrow Dynamic Programming

Finding the most likely path

- Find path π^* that maximizes total joint probability $P[x, \pi]$
 - $P(x, \pi) = a_{0i_1} \times \prod_i e_i(x_i) \times a_{i_{i+1}i}$

The Viterbi Algorithm

Input: $x = x_1 \ldots x_N$

Initialization:
$V_i(0) = 1, V_i(0) = 0$, for all $k > 0$

Iteration:
$V_i(i) = e_i(x_i) \times \max_j a_{ij} V_j(i-1) $

Termination:
$P(x, \pi^*) = \max_k V_k(N)$

Traceback:
Follow max pointers back
Similar to aligning states to seq

Running time and space:
Time: $O(K^2N)$
Space: $O(KN)$

The six algorithmic settings for HMMs

One path
1. Scoring x, one path
 $P(x, \pi)$
 Prob of a path, emissions
 2. Scoring x, all paths
 $P(x) = \sum_{\pi} P(x, \pi)$
 Prob of emissions, over all paths

3. Viterbi decoding
 $\pi^* = \arg \max_{\pi} P(x, \pi)$
 Most likely path

4. Posterior decoding
 $\pi^* = \arg \max_{\pi} \sum_{\tau} P(\tau, \pi | x)$
 Path containing the most likely state at any time point.

5. Supervised learning, given π
 $\Lambda^* = \arg \max_{\Lambda} P(x, \pi | \Lambda)$

6. Unsupervised learning
 $\Lambda^* = \arg \max_{\Lambda} \sum_{\tau} P(\tau, \pi | \Lambda)$
 Viterbi training, best path
 Baum-Welch training, over all paths
2. EVALUATION
(how well does our model capture the world)

Given: Model parameters $e_i(\cdot), a_{ij}$
Given: Sequence of emissions x
Find: $P(x|M)$, summed over all possible paths π

Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:
1. Start at state π_1 according to prob a_{01}
2. Emit letter x_1 according to prob $e_1(x_1)$
3. Go to state π_2 according to prob a_{12}
4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood.
However, in general, many different paths may emit this same sequence x.
How do we find the total probability of generating a given x over any path?

Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

- $P(x) = \sum_{\pi} P(x, \pi) = \sum_{\pi} P(x|\pi) P(\pi)$
- (weighted average of conditional probability, summed over all paths, weighted by each path’s probability)

- Challenge: exponential number of paths

The Forward Algorithm – derivation

Define the forward probability:

$$f(i) = P(x_1...x_i, \pi_i = l)$$

$$= \sum_{\pi_1,...,\pi_{i-1}} P(x_1...x_{i-1}, \pi_1,..., \pi_{i-1}, \pi_i = l) \phi(x_i)$$

$$= \sum_{\pi_1,...,\pi_{i-2}} \sum_{\pi_i = k} P(x_1...x_{i-2}, \pi_1,..., \pi_{i-2}, \pi_{i-1} = k) a_{kl} \phi(x_i)$$

$$= \sum_{\pi_i = k} f(i-1)_k a_{kl} \phi(x_i)$$

$$= \phi(x_i) \sum_k f(i-1)_k a_{kl}$$

Calculate total probability $\sum_\pi P(x, \pi)$ recursively

Assume we know f_j for the previous time step $(i-1)$

Calculate $f(i) = \phi(x_i) \sum_j (f(i-1)_j \times a_{jk})$

Complex: Given x, was it generated by the model?

Calculate probability of emission over all paths

- Each path has associated probability
 - Some paths are likely, others unlikely: sum them all up
 - Return total probability that emissions are observed, summed over all paths
 - Viterbi path is the most likely one
 - How much ‘probability mass’ does it contain?

- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^*
 - Good approximation if Viterbi has highest density
 - BUT: incorrect

- (real) solution
 - Calculate the exact sum iteratively
 - $P(x) = \sum_\pi P(x, \pi)$
 - Can use dynamic programming
The Forward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\[
f_0(0) = 1, \quad f_k(0) = 0, \text{ for all } k > 0
\]

Iteration:
\[
f_k(i) = e_k(x_i) \sum_j a_{jk} f_{i-1}(j)
\]

Termination:
\[
P(x, \pi^*) = \sum_k f_k(N)
\]

In practice:

- Sum of log scores is difficult
- Approximate \(\exp(1+p+q) \)
- Scaling of probabilities

Running time and space:

- **Time:** \(O(KN) \)
- **Space:** \(O(KN) \)

Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology / Transitions</td>
<td>2 states, different nucleotide composition</td>
<td>2 states, different conservation levels</td>
<td>2 states, different tri-nucleotide composition</td>
<td>~20 states, different evolutionary signatures</td>
<td>40 states, different chromatin mark combinations</td>
<td></td>
</tr>
<tr>
<td>Hidden States / Annotation</td>
<td>GC-rich / AT-rich</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intronic or intergenic)</td>
<td>Coding exon / non-coding (intronic or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron1/2/3, intergenic, "+/- strand"</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
</tr>
<tr>
<td>Emissions / Observations</td>
<td>Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>64x64 matrix of codon substitution frequencies</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
</tr>
</tbody>
</table>

The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>Scoring</th>
<th>Decoding</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring (x), one path</td>
<td>3. Viterbi decoding</td>
<td>5. Supervised learning, given (\pi^*)</td>
</tr>
<tr>
<td>(P(x, \pi))</td>
<td>(\pi^* = \underset{\pi}{\text{argmax}} P(x, \pi))</td>
<td>(\Lambda^* = \underset{\pi}{\text{argmax}} \sum_{\pi} P(x, \pi</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>Prob of emissions, all paths</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What have we learned?

- **Modeling sequential data**
 - Recognize a \textit{type} of sequence, genomic, oral, verbal, visual, etc...
- **Definitions**
 - Markov Chains
 - Hidden Markov Models (HMMs)
- **Examples of HMMs**
 - Recognizing GC-rich regions, preferentially-conserved elements, coding exons, protein-coding gene structures, chromatin states
- **Our first computations**
 - Running the model: know model \(\rightarrow \) generate sequence of a 'type'
 - Evaluation: know model, emissions, states \(\rightarrow p \)
 - Viterbi: know model, emissions \(\rightarrow \) find optimal path
 - Forward: know model, emissions \(\rightarrow \) total \(p \) over all paths
- **Next time:**
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training

What have we learned?

- **Modeling sequential data**
 - Recognize a \textit{type} of sequence, genomic, oral, verbal, visual, etc...
- **Definitions**
 - Markov Chains
 - Hidden Markov Models (HMMs)
- **Examples of HMMs**
 - Recognizing GC-rich regions, preferentially-conserved elements, coding exons, protein-coding gene structures, chromatin states
- **Our first computations**
 - Running the model: know model \(\rightarrow \) generate sequence of a 'type'
 - Evaluation: know model, emissions, states \(\rightarrow p \)
 - Viterbi: know model, emissions \(\rightarrow \) find optimal path
 - Forward: know model, emissions \(\rightarrow \) total \(p \) over all paths
- **Next time:**
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training