Goals:
1. Develop geometric intuition for support vector machines, soft margins, kernel trick
2. Develop algorithm to learn decision trees and build ensemble learner

Statistical inference

\[p(y | x; \theta) \]
\[\text{Generative model builds } p(x, y; \theta). \]
(Lecture 4, 8, 11, 12, 13)

Discriminative model does not.
(today)

Support Vector Machine (SVM)

Given a point \(x \in \mathbb{R}^n \), output class \(y \in \{-1, +1\} \)

Strategy: pick hyperplane which separates points in training data \((x_1, y_1), \ldots, (x_n, y_n)\)

\[\begin{align*}
 &w \cdot x + b = 1 \\
 &w \cdot x + b = 0 \\
 &w \cdot x + b = -1
\end{align*} \]

How to pick hyperplane? Maximize the margin (distance to closest point)

\[
\min_{w, b} \frac{1}{2} \|w\|^2 \\
\text{ s.t. } y_i (w \cdot x + b) > 1 \quad \forall i
\]

This is a quadratic program, but hard to solve.
Work on the dual problem:

\[
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j [x_i \cdot x_j]
\]

s.t. \(\alpha_i \geq 0 \) \(\forall i \)

\[\sum_i \alpha_i y_i = 0 \]

From the opt. solution, recover opt. solution to primal problem:

\[w^* = \sum_i \alpha_i^* y_i x_i\]

Many \(\alpha_i = 0 \) in optimal solution. If \(\alpha_i > 0 \), \(x_i \) is a support vector (on the margin). Recover opt. \(b^* \) from any SV:

\[y_m (w \cdot x_m + b^*) = 1\]

How to classify a new point?

\[y' = \text{sign} (w^* \cdot x' + b^*)\]

Generalization bound: How well can classifier do on new data?

One bound: leave-one-out error.

Theorem: \(P(\text{L.O.O.E.}) < \frac{\# \text{SVs}}{n+1} \)

Extensions: ubiquitous in practice.

1. **Soft margin:** allow misclassifications in training data to improve generalization.

\[\min \frac{1}{2} ||w||^2 + C \sum \xi_i\]

\(\xi_i \) slack variables allow error

Tunable parameter (set by cross-validation)
Kernel trick: map data to a higher dimensional space where it can be separated by a hyperplane.

Problem: doing the transform takes additional time, space
Observation: we only ever need the dot product
Kernel function: \(K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \) in some space

Gaussian radial basis function kernel

\[
K(x_i, x_j) = \exp \left(-\gamma \|x_i - x_j\|^2\right)
\]

Claim: This is a dot product in an infinite-dimensional space!

Proof sketch: Manipulation of Taylor series for \(\exp(x) \).

There are conditions to rigorously prove \(K(\cdot, \cdot) \) is an inner product (Mercer's conditions), but hard to prove.

Decision Trees

ex.) Do 2 proteins interact?

Expression \(r^2 > 0.9 \)?

\[
\begin{array}{c}
\text{No} \\
\text{Yes}
\end{array}
\]

Shared localization?

\[
\begin{array}{c}
\text{No} \\
\text{Yes}
\end{array}
\]

Shared function?

\[
\begin{array}{c}
\text{No} \\
\text{Yes}
\end{array}
\]

\[
\text{No}
\]
Advantages: white box, interpretable model. Can recover which features are most important.

How to build a decision tree?

Given examples \((x_1, y_1), \ldots, (x_n, y_n)\):

- If should split sample:
 - Pick feature set that optimally splits
 - Recurse

How to pick feature set? Minimize impurity of partitions

Two common measures:

1. Entropy: \(\sum_k p(y = k) \log p(y = k)\)
2. Gini impurity: \(1 - \sum_k p(y = k)^2\)

How to terminate recursion?

1. All samples have the same label
2. Not enough gain from splitting

How to classify a new point?

- Traverse tree according to splits. At leaf, output majority label.

Problem: splits can be arbitrarily complicated

Solution: random projection: pick from random, fixed size subset at every level.

Problem: single tree may not capture all features

Solution: build many trees, take majority vote (Random Forest)

Problem: not enough examples to train many trees

Solution: sample examples with replacement (Bootstrap aggregating, bagging)