Lecture 7: Linear-Time Sorting

Lecture Overview

• Comparison model

• Lower bounds
 – searching: $\Omega(\lg n)$
 – sorting: $\Omega(n \lg n)$

• $O(n)$ sorting algorithms for small integers
 – counting sort
 – radix sort

Lower Bounds

Claim

• searching among n preprocessed items requires $\Omega(\lg n)$ time
 \implies binary search, AVL tree search optimal

• sorting n items requires $\Omega(n \lg n)$
 \implies mergesort, heap sort, AVL sort optimal

... in the comparison model

Comparison Model of Computation

• input items are black boxes (ADTs)

• only support comparisons ($<$, $>$, \leq, etc.)

• time cost = # comparisons

Decision Tree

Any comparison algorithm can be viewed/specified as a tree of all possible comparison outcomes & resulting output, for a particular n:

• example, binary search for $n = 3$:
In fact, binary decision tree model is more powerful than comparison model, and lower bounds extend to it

Search Lower Bound

- # leaves \(\geq \# \) possible answers \(\geq n \)
- decision tree is binary
- \(\implies \) height \(\geq \log \Theta(n) = \log n + \Theta(1) \)

Sorting Lower Bound

- all \(n! \) are possible answers
- # leaves $\geq n!$

$$\implies \text{height} \geq \lg n!$$

$$= \lg(1 \cdot 2 \cdots (n - 1) \cdot n)$$

$$= \lg 1 + \lg 2 + \cdots + \lg(n - 1) + \lg n$$

$$= \sum_{i=1}^{n} \lg i$$

$$\geq \sum_{i=n/2}^{n} \lg i$$

$$\geq \sum_{i=n/2}^{n} \frac{\lg \frac{n}{2}}{\frac{\lg n - 1}{n/2}}$$

$$= \frac{n}{2} \lg n - \frac{n}{2} = \Omega(n \lg n)$$

- in fact $\lg n! = n \lg n - O(n)$ via Stirling’s Formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \implies \lg n! \sim n \lg n - (\lg e)n + \frac{1}{2} \lg n + \frac{1}{2} \lg(2\pi)$$

Linear-time Sorting

If n keys are integers (fitting in a word) $\in 0, 1, \ldots, k - 1$, can do more than compare them

- \implies lower bounds don’t apply

- if $k = n^{O(1)}$, can sort in $O(n)$ time

OPEN: $O(n)$ time possible for all k?
Counting Sort

\[
L = \text{array of } k \text{ empty lists} \quad \text{\{ } O(k) \\
\quad \text{— linked or Python lists} \quad \text{\}}
\]

for \(j \) in range \(n \):
\[
L[\text{key}(A[j])].append(A[j]) \quad \Rightarrow \quad O(1)
\]
random access using integer key

output = \[
\]

for \(i \) in range \(k \):
output.extend(L[\text{i}])

Assume \(\text{key}(A[i]) \neq \text{key}(A[j]) \) iff \(A[i] \neq A[j] \). \(k \) can be large (e.g., \(2^{32} \)) and
counting sort will require a lot of storage that is sparsely used.

Time: \(\Theta(n + k) \) \quad — \quad also \(\Theta(n + k) \) space

Intuition: Count key occurrences using RAM
output <count> copies of each key in order . . . but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists — but time
bound is the same

Anagram Puzzle

You are given a long list of English words in alphabetical or random order. Your task
is to sort the words such that sets of anagrams are next to each other in the sorted
list minimizing worst-case complexity\(^1\).

For example, given \text{ate, dog, eat, god, tea}, we want \text{ate, eat, tea, dog, god}.

We create a histogram for letters in a word. For each word, we populate an array
of size \(\sigma \), where \(\sigma \) is the size of the alphabet. For English, \(\sigma = 26 \). For our list we get:

\[
\begin{align*}
\text{ate} & \quad 1000100000000000000000001000000 \\
\text{dog} & \quad 00010010000000100000000000 \\
\text{eat} & \quad 10001000000000000000001000000 \\
\text{god} & \quad 00010010000000100000000000 \\
\text{tea} & \quad 10001000000000000000001000000 \\
\end{align*}
\]

Note that the count for every letter is bounded by \(l \) which is less than the length
of the longest word, but in reality will be much smaller, since it is bounded by

\[1\]One can use hashing to solve this problem, but we are focused on a different solution that does
not require hashing.
the maximum number of occurrences of the same letter in any word. For example, *possesses* contains 5 s’s.

It is pretty clear that sorting the above list will give us what we want but what sorting algorithm should we use? These are large numbers and counting sort will require a lot of space. We want a complexity of $O((n + l) \cdot \sigma)$, where n is the number of words.

Radix Sort

Radix sort is a digit-by-digit sorting algorithm that works even for large integers like those in our anagram example above. Radix sort is built on top of counting sort.

- imagine each integer in base b
- $d = \log_b k$ digits $\in \{0, 1, \ldots, b - 1\}$. (In our anagram puzzle, we have $d = \sigma$, and the base $b = l + 1$.)
- sort (all n items) by least significant digit \rightarrow can extract in $O(1)$ time
- ...
- sort by most significant digit \rightarrow can extract in $O(1)$ time
- sort must be stable: preserve relative order of items with the same key
 \implies don’t mess up previous sorting

For example:

```
3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
4 3 6
8 3 9
6 5 7
3 2 9
4 5 7
8 3 9
7 2 0
3 5 5

sort sorted sorted sorted
```

- use counting sort for digit sort
 - $\implies \Theta(n + b)$ per digit
 - $(\implies \Theta((n + l)\sigma)$ total time for the anagram puzzle)
\[\Theta((n + b)d) = \Theta((n + b) \log_b k) \text{ total time} \]

- minimized when \(b = n \)

\[\Theta(n \log_n k) \]

\[= O(nc) \text{ if } k \leq n^c \]