Today: Amortization
- aggregate method
- accounting method
- charging method
- potential method

} different approaches/techniques for
amortized analysis —
all related, but one
often easier than others

- table doubling
- binary counter
- 2-3 trees

} examples of amortized
analysis

Powerful technique for data structure analysis
— often, what you really care about

Recall: table doubling [6.006]
- n elements in table of m slots
- want \(m = \Omega(n) \) for \(1 + \frac{m}{n} = O(1) \) expected
 performance (with hashing with chaining)

- idea: if \(n \) grows \(\geq m \), double \(m \)
- cost: \(\Theta(m+n) = \Theta(n) \) to build new table
 \(\Rightarrow \) pay \(\Theta(2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{\lceil \log n \rceil}) = \Theta(n) \)
 total to resize table over \(n \) insertions
 \(\Rightarrow \Theta(1) \) amortized cost per insertion
Aggregate method: “just add it up”

\[
\text{total cost of } k \text{ operations} = k
\]

- amortized cost per operation
- common only for simple analyses

Amortized bounds:
- assign an “amortized cost” to each operation such that “preserve total”:
 \[\Sigma \text{amortized costs} \geq \Sigma \text{actual costs}\]
 (over all operations, for any operation sequence
 (average is just one option)
- e.g. can say 2-3 trees achieve
 \[O(1)\text{ worst-case per create-empty}\]
 \[O(lg n^*)\text{ amortized per insert}\]
 \[O\text{ amortized per delete (assuming exists)}\]

where \(n^*\) = maximum size of set at any time

because c creations, i insertions, d deletions

\[O(c + (i+d)lg n^*) = O(c + ilg n^* + \emptyset d)\]

\(\leq 2i\)

- we’ll tighten to \(O(lg n)\) where

\(n = \text{current set size}, \text{ below}\)
Accounting method: “planning ahead for rainy day”
- allow an operation to **store credit** (like bank)
 \[\Rightarrow \text{amortized cost} > \text{actual cost}\]
- allow operations to pay using existing credit
 \[\Rightarrow \text{amortized cost} < \text{actual cost}\]

Example: table doubling
- when inserting an element, add a coin to it representing \(c = \Theta(1)\) work
- when table needs to double \(n \rightarrow 2n\), \(n/2\) new elements still with coins

\[\times \times \times \times \times \times \times \times \times\]

\[\times \times \boxtimes \]

\[\times \times \boxtimes \]

\[\times \times \boxtimes \]

\[
\Rightarrow \Theta(n) - \frac{n}{2} \cdot c \text{ amortized rebuild cost} \\
\text{= 0 for large enough } c \\
- \Theta(1) + c = \Theta(1) \text{ amortized cost per insert}
\]

Counterexample: free deletion in 2-3 trees
- **claim:** \(O(\lg n)\) am. insert, \(\Theta\) am. delete
- **attempt:** put coin worth \(\Theta(\lg n)\) on inserted element
- **trouble:** when deleting that element, \(n\) might be bigger \(\Rightarrow\) coin worth too little
Charging method: (blaming the past) (not in CLRS)
- allow operations to charge cost retroactively to past operations (not future ops)
- amortized cost of op. = actual cost + total charge to past ops. + total charge by future ops. to this op.

Example: table doubling
- when table doubles \(n \rightarrow 2n \), charge \(\Theta(n) \) cost to \(n/2 \) inserts since last doubling
- each of these elements charged \(\frac{\Theta(n)}{n/2} = \Theta(1) \) & won't be charged again
- \(\Theta(1) \) amortized per insert

Example: table doubling & halving
- motivation: want \(\Theta(n) \) space even with deletes
- if table down to \(1/4 \) full \((n = m/4) \):
 - shrink to half size \((m \rightarrow m/2) \) at \(\Theta(m) \) cost
 - still half full after any resize
 - still \(\geq m/2 \) inserts to charge to on growth
 - also \(\geq m/4 \) deletes to charge to on shrink
- each operation charged \(\leq \) once, by \(\Theta(1) \)
- \(\Theta(1) \) amortized per insert & delete

- could do this argument with coins instead, but less intuitive (to me)
Example: free deletion in 2-3 trees
- **claim**: $O(lg n)$ am. insert, \emptyset am. delete
- insert charges nothing
- delete charges one insert:
 - NOT the insertion of same element (same problem as accounting method)
 - insertion that brought n to its current value
 - before n can reach this value again, must have another insert
 \Rightarrow each insert charged at most once
Potential method: (defining karma)
- define a potential function Φ mapping data-structure configuration \rightarrow nonnegative integer
 - intuitively measuring “potential energy”
 - potential high costs in the future
 - equivalent to total unused credit
 (unused coins) stored by all past ops.
 - bank account balance
 - nonnegative \Rightarrow never owe the bank
- amortized cost $=$ actual cost $+ \Delta \Phi$
 $= \Phi(\text{DS after op.}) - \Phi(\text{DS before op.})$
⇒ sum of amortized costs telescopes
 $= \text{sum of actual costs} + \Phi(\text{final DS}) - \Phi(\text{initial DS})$
 $\geq \Phi$ initial balance
- so also need to pay $\Phi(\text{initial DS})$ at start
 - ideally Φ or $O(1)$ ~ else another amortization

- in accounting method, specify offset ($\Delta \Phi$)
 between actual cost & amortized cost, which determines total stored value (Φ)
- in potential method, specify total stored value Φ, which determines changes per op: $\Delta \Phi$
- sometimes one is more intuitive than other
- potential method feels most powerful (to me), but also the hardest to come up with proof(Φ)
Example: binary counter

- operation: increment
- increment costs \(\Theta(1 + \# \text{ trailing 1 bits}) \)

 so intuition is that 1 bits are bad
- define \(\Phi = c \cdot \# \text{ 1 bits in counter} \)

 \(\Rightarrow \Delta \Phi \text{ from increment} = c(-\# \text{ trailing 1 bits} + 1) \)

 \(\Rightarrow \text{amortized cost} = \text{actual cost} + \Delta \Phi \)

 \(= \Theta(1 + \# \text{ trailing 1 bits}) + c(-\# \text{ trailing 1 bits} + 1) \)

 \(= O(1) \text{ for } c \text{ large enough} \)
- \(\Phi(\text{initial DS}) = \emptyset \text{ assuming we start @000...0} \)

 (necessary for \(O(1) \) amortized bound)

Example: insert in 2-3 trees

- \(O(\lg n) \) splits in worst case

 but claim only \(O(1) \) amortized splits
- what causes splits? nodes overflowing
- \(\Phi = \# \text{ nodes with 3 children} \)

 \(\Rightarrow \Delta \Phi \leq 1 - \# \text{ splits} \)

 add child @ top \(\Rightarrow \) each split turns \(3 \rightarrow 2 \ 2 \)

 \(\Rightarrow \text{amortized} \# \text{ splits} = \text{actual} \# \text{ splits} + \Delta \Phi \)

 \(\leq \# \text{ splits} + (1 - \# \text{ splits}) = 1. \)
- \(\Phi(\text{initial DS}) = \emptyset \text{ if we start empty} \)

In B-trees: \(\Phi = \# \text{ nodes with } B \text{ children} \)
In \((a,b) \)-trees: \(\Phi = \# \text{ nodes with } 6 \text{ children} \)
Example: insert & delete in $(2,5)$-trees
- claim $O(1)$ amortized splits & merges
- overflows cause splits \rightarrow 5-nodes
- underflows cause merges \rightarrow 2-nodes
- $\Phi = \# 5$-nodes $+ \# 2$-nodes
- insert: $\Delta\Phi \leq 1 - \#$ splits
 make a 5-node from final merge
 destroy 5-nodes ($\&$ no new 2-nodes)

OVERFULL:

$\begin{array}{c}
5 \text{ keys} \\
6 \text{ children}
\end{array}
\quad \Rightarrow
\begin{array}{c}
5 \text{ k} \\
3\text{-node}
\end{array}
\quad \begin{array}{c}
y\text{s} \\
3\text{-node}
\end{array}
$

- delete: $\Delta\Phi \leq 1 - \#$ merges
 make a 2-node from final steal
 destroy 2-nodes ($\&$ no new 5-nodes)

UNDERFULL:

$\begin{array}{c}
\text{1 child} \\
\text{2-node}
\end{array}
\quad \Rightarrow
\begin{array}{c}
\times 1 \\
3\text{-node}
\end{array}
$

\Rightarrow amortized costs $= O(1)$
- Φ(initial DS) = \emptyset if we start empty

In (a,b)-trees: need $b > 2a$

Potential examples could also be done with accounting method: coins on 1s or 3/5-nodes.