TODAY: Cache-oblivious algorithms I (of 2)
- memory hierarchy
- external memory vs. cache oblivious models
- scanning
- divide & conquer
 - median finding
 - matrix multiplication
- LRU block replacement
So far we've viewed all word operations & all memory accesses as equal cost...

Modern memory hierarchy:

- **CPU** - L1 - L2 - L3 - L4 - Main Memory - Flash - Disk (Haswell)

- ~ 10k 100k MBs 100MB GBs-TB 100GB-TBs TBs-PB
- ~ ns 10ns 100ns µs 10-100µs 10ms

- bigger but slower latency: distance travel & physical seek on disk
- bandwidth usually matched (RAID etc.)
- blocking to mitigate latency:
 - when fetching a word of data, get entire block containing it
 - idea: amortize latency over whole block
- amortized cost per word
 - \[\text{latency} \frac{1}{\text{block size}} + \frac{1}{\text{bandwidth}} \]
 - set roughly equal via block size

- to work, we need algorithms to use all elements in a block (spatial locality) & re-use blocks in cache (temporal locality)
External-memory model: [Aggarwal & Vitter 1988]
- just 2 levels:

![Diagram showing two levels of storage: fast (CPU) with O(1) registers, large (M) total size with B blocks per block; slow (CACHE) with slow blocked access; and slow (DISK) also with slow blocked access.]

- cache accesses free (just count computation)
⇒ count memory transfers between cache ↔ disk
 = # blocks read from/written to disk
- algorithm explicitly reads & writes blocks
Cache-oblivious model:

- algorithm doesn't know B or M (!!)
- accessing a word in memory (blocked array: automatically fetches entire block containing it & evicts (writes) least recently used (LRU) block from cache if full (more like real caches)

⇒ every algorithm is a cache-oblivious algorithm
- new measurement & objective: minimize # memory transfers

Why?
- cooler
- often possible
- "cleaner" algorithms, & implementations
- automatic "tuning"
- optimize all levels of memory hierarchy (each with their own B & M)
Scanning:

Single scan: e.g. for \(i \) in `range(N)`:

\[
\text{sum } = A[i]
\]

- assume array \(A \) stored contiguously in memory

- external memory: align \(A \) with block start

\[\Rightarrow \left\lceil \frac{N}{B} \right\rceil \text{ memory transfers} \]

- cache oblivious: can't control alignment

\[\text{still } \leq \left\lceil \frac{N}{B} \right\rceil + 1 = \frac{N}{B} + O(1) \]

\(O(1) \) parallel scans: (assuming \(\frac{N}{B} = \Omega(1) \))

- e.g. reversing \(A[0:n] \):

\[
\text{for } i \text{ in } \text{range}(\left\lfloor \frac{N}{2} \right\rfloor): \]

\[
\text{swap } A[i] \leftrightarrow A[N-i-1]
\]

- keep one block \(A[i] \) & one \(A[N-i-1] \)

\[\Rightarrow O\left(\frac{N}{B} + 1\right) \text{ memory transfers (assuming } \frac{N}{B} \geq 2) \]
Divide & conquer approach: \rightarrow cache oblivious
- algorithm divides problem down to $O(1)$ size
- analysis considers recursion at which
 - problem fits in cache i.e. $\leq M$
 - problem fits in $O(1)$ blocks i.e. $O(B)$
- **TODAY:** one example of each

Median finding / order statistics:
- recall $O(N)$-time deterministic algorithm: $[L2]$
 1. view array as partitioned into columns of 5 like blocks, but $O(1)$ size
 2. sort each column \rightarrow median
 3. recursively find median of column medians
 4. partition array by x $(\leq x, \geq x)$
 5. recurse on one side
- memory transfer analysis: $MT(N)$
 1. free
 2. scan $\Rightarrow O(N/B + 1)$
 3. $MT(N/5) \sim$ if we coalesce $N/5$ medians into a consecutive array (via 2 parallel scans)
 4. 3 parallel scans $\Rightarrow O(N/B + 1)$
 5. $MT(\frac{7}{10}N)$

$\Rightarrow MT(N) = MT(N/5) + MT(\frac{7}{10}N) + O(N/B + 1)$
- usual base case: \(MT(O(1)) = O(1) \)
 \[\Rightarrow MT(N) \geq \text{# leaves } L(N) \text{ in recursion} \]
 \[L(N) = L\left(\frac{N}{5}\right) + L\left(\frac{7}{10} N\right) \]
 \[N^\alpha = \left(\frac{N}{5}\right)^\alpha + \left(\frac{7}{10} N\right)^\alpha \]
 \[1 = \left(\frac{1}{5}\right)^\alpha + \left(\frac{7}{10}\right)^\alpha \]
 \[\Rightarrow \alpha \approx 0.83978 \]
 \[\Rightarrow MT(N) \geq N^{0.8} = \omega\left(\frac{N}{B}\right) \text{ if } B = \omega\left(B^{0.2}\right) \]

- stronger base case: \(MT(O(1)) = O(1) \)
 \[\Rightarrow \text{# leaves } L(N) = \left(\frac{N}{B}\right)^\alpha = \omega\left(\frac{N}{B}\right) \]
 - cost at each level of recursion tree decreases geometrically down
 (a little tricky to prove — better to use substitution method like \(L_2 \))
 \[\Rightarrow \text{dominated by root cost } O\left(\frac{N}{B} + 1\right) \]
 \[\Rightarrow MT(N) = O\left(\frac{N}{B} + 1\right) \]
Matrix multiplication:

```
\[ Z = X \cdot Y \]
```

Standard algorithm:
- Ideal memory layout:
 - X stored in row-major order
 - Y stored in column-major order
 - Z stored in either, say row-major
- Each z_{ij} costs $\Theta(NY/B + 1)$
- Upper bound: 2 parallel scans
- X row i gets re-used in all z_{im} (assuming $NY/B > 3$)
- But Y column j gets read for every z_{ij} (assuming $M < N^2 = \text{size}(Y)$)
- $MT(N) = \Theta(N^3/B + N^2)$ — **not optimal**

Block algorithm:

```
\[
\begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
= \begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix} \cdot \begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\]
```

- Store matrices in recursive block layout:
 - Order of blocks doesn't matter
 - Key: each block is stored consecutively
- $MT(N) = 8 \cdot MT(N/2) + O(N^2/B + 1)$ — recursion addition is 3 parallel scans
- base cases: \(MT(O(1)) = O(1) \)
 \(MT(O(B)) = O(1) \)
 \(MT(O(\sqrt[3]{N})) = O(NB) \)
 \[\Rightarrow 3 \sqrt[3]{Y^2} \times \sqrt[3]{Y^2} \text{ fit in cache} \]

- recursion tree:
 \[
 \begin{align*}
 N^2/B & \quad \rightarrow N^2/B \\
 1/4 N^2/B & \quad \rightarrow 2N^2/B \\
 \vdots & \\
 O(NB) & \quad \rightarrow O(NB) \\
 \end{align*}
 \]

 \[\text{#leaves} = 8^{log_2(N/B^2)} = O((N/B)^3) = O\left(\frac{N^3}{B^3}\right)\]

- geometrically increasing cost down tree
 (like Master Theorem)

 \[\Rightarrow \text{dominated by leaf level} \]
 \[\Rightarrow MT(N) = O\left(\frac{N^3}{B^3}\right) \quad \text{← ASYMPTOTICALLY OPTIMAL} \]

- generalizes to non-powers of 2
 & non-square matrices

- similar algorithms & analyses for
 - Strassen's algorithm
 - FFT
Why LRU block replacement strategy?

\[\text{LRU}_m \leq 2 \cdot \text{OPT}_{m/2} \]

[Sleator & Tarjan 1985]

RESOURCE AUGMENTATION (changing \(m \))

Proof:
- partition block access sequence into maximal phases of \(\frac{M}{B} \) distinct blocks
- LRU spends \(\leq \frac{M}{B} \) memory transfers/phase
- OPT must spend \(\geq \frac{m}{A/B} \) memory transfers per phase: at best, starts phase with entire \(\frac{M}{2} \) cache with needed items, but there are \(\frac{M}{B} \) blocks during phase, so \(\frac{1}{2} \) half free

ONLINE ALGORITHMS — comparing regular
“online” algorithm (can’t see the future)
against offline/prescient optimal algorithm

- changing \(m \) by factor of 2 doesn’t affect
bounds like \(\Theta(\frac{N^2}{B \sqrt{M}}) \)