Today: Cache-oblivious algorithms II
- search: binary
 B-ary
 cache-oblivious
- sorting: mergesorts
 cache-oblivious
- follow-on classes

Recall:
- external-memory model:
 - [CPU]:
 - $O(1)$ registers
 - [CACHE]:
 - fast
 - MB blocks
 - total size M
 - [DISK]:
 - slow
 - blocked
 - B words/block
 - count # (block) memory transfers $MT(N)$

- cache-oblivious model:
 - algorithm doesn't know B or M
 - automatic block loads & eviction of Least Recently Used (LRU) block
Why LRU block replacement strategy?

\[LRU_m \leq 2 \cdot OPT_{m/2} \]

[Slieator & Tarjan 1985]

Proof:
- partition block access sequence into maximal phases of \(M/B \) distinct blocks
- LRU spends \(\leq M/B \) memory transfers/phase
- \(OPT \) must spend \(\geq M/2 \) memory transfers per phase: at best, starts phase with entire \(M/2 \) cache with needed items, but there are \(M/B \) blocks during phase, so \(<\) half free

ONLINE ALGORITHMS — comparing regular "online" algorithm (can't see the future) against offline/prescient optimal algorithm

- changing \(M \) by factor of 2 doesn't affect bounds like \(O(\sqrt{B/M}) \)
Search: preprocess n elements in comparison model to support predecessor search for x.

1. B-trees support predecessor (and insert & delete) in $O(\log_{B+1} N)$ memory transfers. \(\text{want } B > 1 \text{ even if } B = 1 \) but will ignore.
 - Each node occupies $\Theta(1)$ blocks.
 - Height = $\Theta(\log_B N)$.
 - Need to know B.

Cache oblivious?
2 Binary search: divide & conquer is good, right?

- different block \(\approx \) until in \(x \)'s block

\[\Rightarrow \quad MT(N) = \Theta(lg N - lg B) = \Theta(lg \frac{N}{B}) \quad \text{SLOW} \]

3 Van Emde Boas layout: [Prokop 1999]

- store \(N \) elements in complete BST
- carve BST at middle level of edges:

- recursively lay out the pieces & concatenate:

- like block matrix multiplication, order of pieces doesn't matter; just need each piece to be stored consecutively

Example:

Order in memory
Analysis of BST search in vEB layout:
- consider recursive level of refinement at which Δ has $\leq B$ nodes:

- $\Delta \leq B^{\text{height is between } \frac{1}{b} \log B \text{ & } \log B}$
 (binary searching on height)
 \Rightarrow size is between \sqrt{B} \& B
 \Rightarrow any root-to-node path (search path)
 visits $\leq \frac{\log N}{\frac{1}{b} \log B} = 2 \log_B N \triangleleft B$'s

- each $\triangleleft B$ occupies ≤ 2 memory blocks
 $\Rightarrow \leq 4 \log_B N = O(\log_B N)$ memory transfers

- generalizes to height not a power of 2, B-trees of constant branching factor, \& dynamic B-trees: $O(\log_B N)$ insert/del.
 [Bender, Demaine, Farach-Colton 2000]
 (see 6.851: Advanced DSs)
Sorting:

1. N inserts into (cache-oblivious) B-tree
 $\Rightarrow MT(N) = \Theta(N \log_B N)$ — NOT OPTIMAL
 - by contrast, BST sort is optimal $O(N \log N)$

2. (binary) mergesort is cache-oblivious
 - merge is 3 parallel scans
 $\Rightarrow MT(N) = 2 \cdot MT(\frac{N}{2}) + O(\frac{N}{B} + 1)$
 $MT(M) = O(\frac{M}{B})$
 - recursion tree:
 $\frac{N}{B} \quad \frac{N}{B}$
 $\frac{1}{2} \frac{N}{B} \quad \frac{1}{2} \frac{N}{B}$
 \vdots
 $O(\frac{N}{M})$ leaves
 $\Rightarrow MT(N) = \frac{N}{B} \log \frac{N}{M} \left\approx \frac{B}{\log B} \text{ faster than (1)!} \right.$

3. $\frac{N}{B}$-way mergesort: (vs. binary mergesort)
 - split array into $\frac{N}{B}$ equal subarrays
 - recursively sort each (contiguous)
 - merge via $\frac{N}{B}$ parallel scans
 (keeping one “current” block per list)
$$\Rightarrow MT(N) = \frac{M}{B} \cdot MT\left(\frac{N}{MB}\right) + O\left(\frac{N}{B} + 1\right)$$

$$MT(M) = O\left(\frac{N}{B}\right)$$

$$\Rightarrow \text{height becomes} \quad \log_{MB} \frac{N}{M} + 1$$

$$= \log_{MB} \frac{N}{B} \frac{B}{M} + 1$$

$$= \log_{MB} \frac{N}{B} - \log_{MB} \frac{M}{B} + 1$$

$$= \log_{MB} \frac{N}{B}$$

$$\Rightarrow MT(N) = O\left(\frac{N}{B} \log_{MB} \frac{N}{B}\right) \leftarrow \text{asymptotically optimal}$$

(in comparison model)

(4) **cache-oblivious sorting** requires

full-cache assumption:

$$M = \Omega(B^{1+\varepsilon}) \text{ for some fixed } \varepsilon > 0$$

e.g. $$M = \Omega(B^2) \text{ i.e. } \frac{M}{B} = \Omega(B)$$

- then $\approx N^\varepsilon$-way merge sort with recursive ("funnel") merge works

(5) **priority queues**: $O\left(\frac{1}{B} \log_{MB} \frac{N}{B}\right)$ per insert or delete-min

\Rightarrow generalizes sorting

- external memory & cache oblivious!

- see 6.851
Algorithms classes at MIT: (post-6.046)
- 6.047: Computational Biology (genomes, phylogeny, etc.)
- 6.854: Advanced Algorithms (intense survey of whole field)
- 6.850: Geometric Computing (working with points, lines, polygons, meshes, ...)
- 6.849: Geometric Folding Algorithms (origami, robot arms, protein folding, ...)
- 6.851: Advanced Data Structures (sublogarithmic performance)
- 6.852: Distributed Algorithms (reaching consensus in a network with faults)
- 6.853: Algorithmic Game Theory (Nash equilibria, auction mechanism design, ...)
- 6.855: Network Optimization (optimization in graph: beyond shortest paths)
- 6.856: Randomized Algorithms (how randomness makes algs. simpler & faster)
- 6.857: Network and Computer Security (applied cryptography)
- 6.875: Cryptography and Cryptanalysis (theoretical cryptography)
- 6.816: Multicore Programming
Other theory classes:
- 6.045: Automata, Computability, & Complexity
- 6.840: Theory of Computing
- 6.841: Advanced Complexity Theory
- 6.842: Randomness & Computation
- 6.845: Quantum Complexity Theory
- 6.440: Essential Coding Theory
- 6.441: Information Theory

— Frisbee Competition —