This Week

• **Synchronous distributed algorithms:**
 – Leader Election
 – Maximal Independent Set
 – Breadth-First Spanning Trees
 – Shortest Paths Trees (started)

 – Shortest Paths Trees (finish)

• **Asynchronous distributed algorithms:**
 – Breadth-First Spanning Trees
 – Shortest Paths Trees
Distributed Networks

• Based on undirected graph $G = (V, E)$.
 – $n = |V|$
 – $\Gamma(u)$, set of neighbors of vertex u.
 – $\deg(u) = |\Gamma(u)|$, number of neighbors of vertex u.

• Associate a process with each graph vertex.

• Associate two directed communication channels with each edge.
Synchronous Distributed Algorithms
Synchronous Network Model

- Processes at graph vertices, communicate using messages.
- Each process has output ports, input ports that connect to communication channels.

- Algorithm executes in synchronous rounds.
- In each round:
 - Each process sends messages on its ports.
 - Each message gets put into the channel, delivered to the process at the other end.
 - Each process computes a new state based on the arriving messages.
Leader Election
n-vertex Clique

- Theorem: There is no algorithm consisting of deterministic, indistinguishable processes that is guaranteed to elect a leader in G.

- Theorem: There is an algorithm consisting of deterministic processes with UIDs that is guaranteed to elect a leader.
 - 1 round, n^2 messages.

- Theorem: There is an algorithm consisting of randomized, indistinguishable processes that eventually elects a leader, with probability 1.
 - Expected time $\leq \frac{1}{1-\epsilon}$.
 - With probability $\geq 1 - \epsilon$, finishes in one round.
Maximal Independent Set (MIS)
MIS

• **Independent:** No two neighbors are both in the set.
• **Maximal:** We can’t add any more nodes without violating independence.
• Every node is either in S or has a neighbor in S.
• **Assume:**
 – No UIDs
 – Processes know a good upper bound on n.
• **Require:**
 – Compute an MIS S of the network graph.
 – Each process in S should output *in*, others output *out*.
Luby’s Algorithm

• Initially all nodes are **active**.
• At each phase, some active nodes decide to be **in**, others decide to be **out**, the rest continue to the next phase.

• Behavior of active node at a phase:
 • **Round 1:**
 – Choose a random value r in $\{1, 2, \ldots, n^5\}$, send it to all neighbors.
 – Receive values from all active neighbors.
 – If r is strictly greater than all received values, then join the MIS, output **in**.
 • **Round 2:**
 – If you joined the MIS, announce it in messages to all (active) neighbors.
 – If you receive such an announcement, decide not to join the MIS, output **out**.
 – If you decided one way or the other at this phase, become **inactive**.
Luby’s Algorithm

• **Theorem:** If Luby’s algorithm ever terminates, then the final set S is an MIS.

• **Theorem:** With probability at least $1 - \frac{1}{n}$, all nodes decide within $4 \log n$ phases.
Breadth-First Spanning Trees
Breadth-First Spanning Trees

• Distinguished vertex v_0.
• Processes must produce a Breadth-First Spanning Tree rooted at vertex v_0.

• Assume:
 – UIDs.
 – Processes have no knowledge about the graph.

• Output: Each process $i \neq i_0$ should output $parent(j)$.
Simple BFS Algorithm

- Processes mark themselves as they get incorporated into the tree.
- Initially, only i_0 is marked.
- Algorithm for process i:
 - Round 1:
 - If $i = i_0$ then process i sends a search message to its neighbors.
 - If process i receives a message, then it:
 - Marks itself.
 - Selects i_0 as its parent, outputs $parent(i_0)$.
 - Plans to send at the next round.
 - Round $r > 1$:
 - If process i planned to send, then it sends a search message to its neighbors.
 - If process i is not marked and receives a message, then it:
 - Marks itself.
 - Selects one sending neighbor, j, as its parent, outputs $parent(j)$.
 - Plans to send at the next round.
Correctness

- State variables, per process:
 - marked, a Boolean, initially true for i_0, false for others
 - parent, a UID or undefined
 - send, a Boolean, initially true for i_0, false for others
 - uid

- Invariants:
 - At the end of r rounds, exactly the processes at distance $\leq r$ from v_0 are marked.
 - A process $\neq i_0$ has its parent defined iff it is marked.
 - For any process at distance d from v_0, if its parent is defined, then it is the UID of a process at distance $d-1$ from v_0.
Complexity

- **Time complexity:**
 - Number of rounds until all nodes outputs their parent information.
 - Maximum distance of any node from v_0, which is $\leq diam$

- **Message complexity:**
 - Number of messages sent by all processes during the entire execution.
 - $O(|E|)$
Bells and Whistles

- **Child pointers:**
 - Send *parent/nonparent* responses to search messages.

- **Distances:**
 - Piggyback distances on *search* messages.

- **Termination:**
 - Convergecast starting from the leaves.

- **Applications:**
 - Message broadcast from the root
 - Global computation
Shortest Paths Trees
Shortest Paths

• Generalize the BFS problem to allow weights on the graph edges, $\text{weight}_{\{u,v\}}$ for edge $\{u, v\}$
• Connected graph $G = (V, E)$, root vertex v_0, process i_0.
• Processes have UIDs.
• Processes know their neighbors and the weights of their incident edges, but otherwise have no knowledge about the graph.
Shortest Paths

• Processes must produce a Shortest-Paths Spanning Tree rooted at vertex \(v_0 \).

• Branches are directed paths from \(v_0 \).
 – **Spanning:** Branches reach all vertices.
 – **Shortest paths:** The total weight of the tree branch to each node is the minimum total weight for any path from \(v_0 \) in \(G \).

• **Output:** Each process \(i \neq i_0 \) should output \(parent(j), distance(d), \) meaning that:
 – \(j \)’s vertex is the parent of \(i \)'s vertex on a shortest path from \(v_0 \),
 – \(d \) is the total weight of a shortest path from \(v_0 \) to \(j \).
Bellman-Ford Shortest Paths Algorithm

- State variables:
 - $dist$, a nonnegative real or ∞, representing the shortest known distance from v_0. Initially 0 for process i_0, ∞ for the others.
 - $parent$, a UID or undefined, initially undefined.
 - uid

- Algorithm for process i:
 - At each round:
 - Send a $distance(dist)$ message to all neighbors.
 - Receive messages from neighbors; let d_j be the distance received from neighbor j.
 - Perform a relaxation step:
 $$dist := \min(dist, \min_j (d_j + weight_{i,j})).$$
 - If $dist$ decreases then set $parent := j$, where j is any neighbor that produced the new $dist$.
Correctness

- **Claim:** Eventually, every process i has:
 - $dist = \text{minimum weight of a path from } i_0 \text{ to } i$, and
 - if $i \neq i_0$, $parent = \text{the previous node on some shortest path from } i_0 \text{ to } i$.

- **Key invariant:**
 - For every r, at the end of r rounds, every process $i \neq i_0$ has its $dist$ and $parent$ corresponding to a shortest path from i_0 to i among those paths that consist of at most r edges; if there is no such path, then $dist = \infty$ and $parent$ is undefined.
Complexity

- **Time complexity:**
 - Number of rounds until all the variables stabilize to their final values.
 - \(n - 1 \) rounds

- **Message complexity:**
 - Number of messages sent by all processes during the entire execution.
 - \(O(n \cdot |E|) \)

- **More expensive than BFS:**
 - \(diam \) rounds,
 - \(O(|E|) \) messages

- **Q:** Does the time bound really depend on \(n \)?
Child Pointers

• Ignore repeated messages.
• When process i receives a message that it does not use to improve $dist$, it responds with a nonparent message.
• When process i receives a message that it uses to improve $dist$, it responds with a parent message, and also responds to any previous parent with a nonparent message.
• Process i records nodes from which it receives parent messages in a set $children$.
• When process i receives a nonparent message from a current child, it removes the sender from its children.
• When process i improves $dist$, it empties children.
Termination

- **Q:** How can the processes learn when the shortest-paths tree is completed?
- **Q:** How can a process even know when it can output its own *parent* and *distance*?

- If processes knew an upper bound on n, then they could simply wait until that number of rounds have passed.
- But what if they don’t know anything about the graph?

- Recall termination for BFS: Used *convergecast*.
- **Q:** Does that work here?
Termination

- **Q:** How can the processes learn when the shortest-paths tree is completed?
- **Q:** Does convergecast work here?
- Yes, but it’s trickier, since the tree structure changes.

Key ideas:
- A process $\neq i_0$ can send a `done` message to its current parent after:
 - It has received responses to all its distance messages, so it believes it knows who its children are, and
 - It has received `done` messages from all of those children.
- The same process may be involved several times in the convergecast, based on improved estimates.
Termination
Asynchronous Distributed Algorithms
Asynchronous Network Model

• Complications so far:
 – Processes act concurrently.
 – A little nondeterminism.

• Now things get much worse:
 – No rounds---process steps and message deliveries happen at arbitrary times, in arbitrary orders.
 – Processes get out of synch.
 – Much more nondeterminism.

• Understanding asynchronous distributed algorithms is hard because we can’t understand exactly how they execute.

• Instead, we must understand abstract properties of executions.
Aynchronous Network Model

- Lynch, Distributed Algorithms, Chapter 8.
- Processes at nodes of an undirected graph $G = (V, E)$, communicate using messages.
- Communication channels associated with edges (one in each direction on each edge).
 - $C_{u,v}$, channel from vertex u to vertex v.
- Each process has output ports and input ports that connect it to its communication channels.
- Processes need not be distinguishable.
Channel Automaton $C_{u,v}$

• Formally, an input/output automaton.
• Input actions: $send(m)_{u,v}$
• Output actions: $receive(m)_{u,v}$
• State variable:
 – $mqueue$, a FIFO queue, initially empty.
• Transitions:
 – $send(m)_{u,v}$
 • Effect: add m to $mqueue$.
 – $receive(m)_{u,v}$
 • Precondition: $m = head(mqueue)$
 • Effect: remove head of $mqueue$
Process Automaton P_u

- Associate a process automaton with each vertex of G.
- To simplify notation, let P_u denote the process automaton at vertex u.
 - But the process does not “know” u.

- P_u has $send(m)_{u,v}$ outputs and $receive(m)_{v,u}$ inputs.
- May also have external inputs and outputs.
- Has state variables.
- Keeps taking steps (eventually).
Example: Max_u Process Automaton

- Input actions: $receive(m)_{v,u}$
- Output actions: $send(m)_{u,v}$
- State variables:
 - max, a natural number, initially x_u
 - For each neighbor v:
 - $send(v)$, a Boolean, initially $true$
- Transitions:
 - $receive(m)_{v,u}$
 - Effect: if $m > max$ then
 - $max := m$
 - for every w, $send(w) := true$
 - $send(m)_{u,v}$
 - Precondition: $send(v) = true$ and $m = max$
 - Effect: $send(v) := false$
Combining Processes and Channels

- Undirected graph $G = (V, E)$.
- Process P_u at each vertex u.
- Channels $C_{u,v}$ and $C_{v,u}$, associated with each edge $\{u, v\}$.
- $send(m)_{u,v}$ output of process P_u gets identified with $send(m)_{u,v}$ input of channel $C_{u,v}$.
- $receive(m)_{v,u}$ output of channel $C_{v,u}$ gets identified with $receive(m)_{v,u}$ input of process P_u.
- Steps involving such a shared action involve simultaneous state transitions for a process and a channel.
Execution

• No synchronous rounds anymore.
• The system executes by performing enabled steps, one at a time, in any order.
• Formally, an execution is modeled as a sequence of individual steps.
• Different from the synchronous model, in which all processes take steps concurrently at each round.

• Assume enabled steps eventually occur:
 – Each channel always eventually delivers the first message in its queue.
 – Each process always eventually performs some enabled step.
Combining *Max* Processes and Channels

- Each process Max_u starts with an initial value x_u.
- They all send out their initial values, and propagate their *max* values, until everyone has the globally-maximum value.
- Sending and receiving steps can happen in many different orders, but in all cases the global max will eventually arrive everywhere.
Max System
Max System
Max System

Diagram of a Max system with nodes labeled 10, 5, 3, 4, and 7, connected by directed edges with weights 5, 7, and 7.
Max System
Max System
Max System

![Diagram of a max system network with nodes labeled 5, 10, and 7 and connections showing values of 10 between nodes.](image-url)
Max System
Max System
Max System

Diagram with nodes labeled '10' connected by arrows.
Complexity

- **Message complexity:**
 - Number of messages sent by all processes during the entire execution.
 - $O(n \cdot |E|)$

- **Time complexity:**
 - **Q:** What should we measure?
 - Not obvious, because the various components are taking steps in arbitrary orders---no “rounds”.
 - A common approach:
 - Assume real-time upper bounds on the time to perform basic steps:
 - d for a channel to deliver the next message, and
 - l for a process to perform its next step.
 - Infer a real-time upper bound for solving the overall problem.
Complexity

- **Time complexity:**
 - Assume real-time upper bounds on the time to perform basic steps:
 - \(d \) for a channel to deliver the next message, and
 - \(l \) for a process to perform its next step.
 - Infer a real-time upper bound for solving the problem.

- **For the Max system:**
 - Ignore local processing time (\(l = 0 \)), consider only channel sending time.
 - Straightforward upper bound: \(O(diam \cdot n \cdot d) \)
 - Consider the time for the max to reach any particular vertex \(u \), along a shortest path in the graph.
 - At worst, it waits in each channel on the path for every other value, which is at most time \(n \cdot d \) for that channel.
Breadth-First Spanning Trees
Breadth-First Spanning Trees

- **Problem**: Compute a Breadth-First Spanning Tree in an asynchronous network.
- Connected graph $G = (V, E)$.
- Distinguished root vertex v_0.
- Processes have no knowledge about the graph.
- Processes have UIDs
 - i_0 is the UID of the root v_0.
 - Processes know UIDs of their neighbors, and know which ports are connected to each neighbor.
- Processes must produce a BFS tree rooted at v_0.
- Each process $i \neq i_0$ should output $\text{parent}(j)$, meaning that j’s vertex is the parent of i’s vertex in the BFS tree.
First Attempt

• Just run the simple synchronous BFS algorithm asynchronously.
• Process i_0 sends *search* messages, which everyone propagates the first time they receive it.
• Everyone picks the first node from which it receives a *search* message as its parent.

• Nondeterminism:
 – No longer any nondeterminism in process decisions.
 – But plenty of new nondeterminism: orders of message deliveries and process steps.
Process Automaton P_u

- Input actions: $receive(search)_{v,u}$
- Output actions: $send(search)_{u,v}; parent(v)_u$
- State variables:
 - $parent$: $\Gamma(u) \cup \{\bot\}$, initially \bot
 - $reported$: Boolean, initially false
 - For every $v \in \Gamma(u)$:
 - $send(v) \in \{search, \bot\}$, initially $search$ if $u = v_0$, else \bot

- Transitions:
 - $receive(search)_{v,u}$
 - Effect: if $u \neq v_0$ and $parent = \bot$ then
 - $parent := v$
 - for every w, $send(w) := search$
Process Automaton P_u

• Transitions:
 – $\text{receive(search)}_{v,u}$
 • Effect: if $u \neq v_0$ and $\text{parent} = \bot$ then
 – $\text{parent} := v$
 – for every w, $\text{send}(w) := \text{search}$
 – $\text{send(search)}_{u,v}$
 • Precondition: $\text{send}(v) = \text{search}$
 • Effect: $\text{send}(v) := \bot$
 – $\text{parent}(v)_u$
 • Precondition: $\text{parent} = v$ and $\text{reported} = \text{false}$
 • Effect: $\text{reported} := \text{true}$
Running Simple BFS Asynchronously
Final Spanning Tree
Actual BFS
Anomaly

• Paths produced by the algorithm may be longer than the shortest paths.
• Because in asynchronous networks, messages may propagate faster along longer paths.
Complexity

- **Message complexity:**
 - Number of messages sent by all processes during the entire execution.
 - $O(|E|)$

- **Time complexity:**
 - Time until all processes have chosen their parents.
 - Neglect local processing time.
 - $O(\text{diam} \cdot d)$
 - **Q:** Why diam, when some of the paths are longer?
 - The time until a node receives a *search* message is at most the time it would take on a shortest path.
Extensions

• Child pointers:
 – As for synchronous BFS.
 – Everyone who receives a search message sends back a parent or nonparent response.

• Termination:
 – After a node has received responses to all its search messages, it knows who its children are, and knows they are marked.
 – The leaves of the tree learn who they are.
 – Use a convergecast strategy, as before.
 – Time complexity: After the tree is done, it takes time $O(n \cdot d)$ for the done information to reach i_0.
 – Message complexity: $O(n)$
Applications

- **Message broadcast:**
 - Process i_0 can use the tree (with child pointers) to broadcast a message.
 - Takes $O(n \cdot d)$ time and n messages.

- **Global computation:**
 - Suppose every process starts with some initial value, and process i_0 should determine the value of some function of the set of all processes’ values.
 - Use convergecast on the tree.
 - Takes $O(n \cdot d)$ time and n messages.
Second Attempt

• A relaxation algorithm, like synchronous Bellman-Ford.
• Before, we corrected for paths with many hops but low weights.
• Now, instead, correct for errors caused by asynchrony.
• Strategy:
 – Each process keeps track of the hop distance, changes its parent when it learns of a shorter path, and propagates the improved distances.
 – Eventually stabilizes to a breadth-first spanning tree.
Process Automaton \(P_u \)

- **Input actions**: \(\text{receive}(m)_{v,u}, m \) a nonnegative integer
- **Output actions**: \(\text{send}(m)_{u,v}, m \) a nonnegative integer

- **State variables**:
 - \(\text{parent} \):\(\Gamma(u) \cup \{ \perp \} \), initially \(\perp \)
 - \(\text{dist} \in N \cup \{ \infty \} \), initially 0 if \(u = v_0 \), \(\infty \) otherwise
 - For every \(v \in \Gamma(u)
 - \text{send}(v) \), a FIFO queue of \(N \), initially \((0) \) if \(u = v_0 \), else empty

- **Transitions**:
 - \(\text{receive}(m)_{v,u} \)
 - Effect: if \(m + 1 < \text{dist} \) then
 - \(\text{dist} := m + 1 \)
 - \(\text{parent} := v \)
 - for every \(w \), add \(\text{dist} \) to \(\text{send}(w) \)
Process Automaton P_u

- Transitions:
 - $receive(m)_{v,u}$
 - Effect: if $m + 1 < \text{dist}$ then
 - $\text{dist} := m + 1$
 - $\text{parent} := v$
 - for every w, add $m + 1$ to $send(w)$

 - $send(m)_{u,v}$
 - Precondition: $m = \text{head}(send(v))$
 - Effect: remove head of $send(v)$

- No terminating actions...
Correctness

• For synchronous BFS, we characterized precisely the situation after r rounds.
• We can’t do that now.
• Instead, state abstract properties, e.g., invariants and timing properties, e.g.:
 • **Invariant:** At any point, for any node $u \neq v_0$, if its $\text{dist} \neq \infty$, then it is the actual distance on some path from v_0 to u, and its parent is u’s predecessor on such a path.
 • **Timing property:** For any node u, and any r, $0 \leq r \leq \text{diam}$, if there is an at-most-r-hop path from v_0 to u, then by time $r \cdot n \cdot d$, node u’s dist is $\leq r$.
Complexity

- **Message complexity:**
 - Number of messages sent by all processes during the entire execution.
 - $O(n |E|)$

- **Time complexity:**
 - Time until all processes’ `dist` and `parent` values have stabilized.
 - Neglect local processing time.
 - $O(diam \cdot n \cdot d)$
 - Time until each node receives a message along a shortest path, counting time $O(n \cdot d)$ to traverse each link.
Termination

• **Q:** How can processes learn when the tree is completed?
• **Q:** How can a process know when it can output its own $dist$ and $parent$?
• Knowing a bound on n doesn’t help here: can’t use it to count rounds.

• Can use **convergecast**, as for synchronous Bellman-Ford:
 – Compute and recompute child pointers.
 – Process $\neq v_0$ sends **done** to its current parent after:
 • It has received responses to all its messages, so it believes it knows all its children, and
 • It has received **done** messages from all of those children.
 – The same process may be involved several times, based on improved estimates.
Uses of Breadth-First Spanning Trees

• Same as in synchronous networks, e.g.:
 – Broadcast a sequence of messages
 – Global function computation

• Similar costs, but now count time d instead of one round.
Shortest Paths Trees
Shortest Paths

- **Problem:** Compute a Shortest Paths Spanning Tree in an asynchronous network.
- Connected weighted graph, root vertex \(v_0 \).
- weight\(_{u,v}\) for edge \(\{u, v\} \).
- Processes have no knowledge about the graph, except for weights of incident edges.
- UIDs

- Processes must produce a Shortest Paths spanning tree rooted at \(v_0 \).
- Each process \(u \neq v_0 \) should output its distance and parent in the tree.
Shortest Paths

• Use a relaxation algorithm, once again.
• Asynchronous Bellman-Ford.

• Now, it handles two kinds of corrections:
 – Because of long, small-weight paths (as in synchronous Bellman-Ford).
 – Because of asynchrony (as in asynchronous Breadth-First search).

• The combination leads to surprisingly high message and time complexity, much worse than either type of correction alone (exponential).
Asynch Bellman-Ford, Process P_u

- Input actions: $receive(m)_{v,u}$, m a nonnegative integer
- Output actions: $send(m)_{u,v}$, m a nonnegative integer

- State variables:
 - $parent$: $\Gamma(u) \cup \{\perp\}$, initially \perp
 - $dist \in \mathbb{N} \cup \{\infty\}$, initially 0 if $u = v_0$, ∞ otherwise
 - For every $v \in \Gamma(u)$:
 - $send(v)$, a FIFO queue of \mathbb{N}, initially (0) if $u = v_0$, else empty

- Transitions:
 - $receive(m)_{v,u}$
 - Effect: if $m + weight_{v,u} < dist$ then
 - $dist := m + weight_{v,u}$
 - $parent := v$
 - for every w, add $dist$ to $send(w)$
Asynch Bellman-Ford, Process P_u

- **Transitions:**
 - $receive(m)_{v,u}$
 - Effect: if $m + weight_{v,u} < dist$ then
 - $dist := m + weight_{v,u}$
 - $parent := v$
 - for every w, add $dist$ to $send(w)$
 - $send(m)_{u,v}$
 - Precondition: $m = head(send(v))$
 - Effect: remove head of $send(v)$

- No terminating actions...
Correctness:
Invariants and Timing Properties

• **Invariant:** At any point, for any node \(u \neq v_0 \), if its \(dist \neq \infty \), then it is the actual distance on some path from \(v_0 \) to \(u \), and its *parent* is \(u \)'s predecessor on such a path.

• **Timing property:** For any node \(u \), and any \(r \), \(0 \leq r \leq diam \), if \(p \) is any at-most-\(r \)-hop path from \(v_0 \) to \(u \), then by time ???, node \(u \)'s \(dist \) is \(\leq \) total weight of \(p \).

• **Q:** What is ??? ?
• It depends on how many messages might pile up in a channel.
• This can be a lot!
Complexity

- $O(n!)$ simple paths from v_0 to any other node u, which is $O(n^n)$.
- So the number of messages sent on any channel is $O(n^n)$.
- Message complexity: $O(n^n |E|)$.
- Time complexity: $O(n^n \cdot n \cdot d)$.

Q: Are such exponential bounds really achievable?
Complexity

- **Q:** Are such exponential bounds really achievable?
- **Example:**
 - There is an execution of the network below in which node v_k sends $2^k \approx 2^{n/2}$ messages to node v_{k+1}.
 - Message complexity is $\Omega(2^{n/2})$.
 - Time complexity is $\Omega(2^{n/2} d)$.

![Network Diagram]

![Network Diagram]
Complexity

- Execution in which node v_k sends 2^k messages to node v_{k+1}.
- Possible distance estimates for v_k are $2^k - 1, 2^k - 2, \ldots, 0$.
- Moreover, v_k can take on all these estimates in sequence:
 - First, messages traverse upper links, $2^k - 1$.
 - Then last lower message arrives at v_k, $2^k - 2$.
 - Then lower message $v_{k-2} \rightarrow v_{k-1}$ arrives, reduces v_{k-1}’s estimate by 2, message $v_{k-1} \rightarrow v_k$ arrives on upper links, $2^k - 3$.
 - Etc. Count down in binary.
 - If this happens quickly, get pileup of 2^k search messages in $C_{k,k+1}$.
Termination

- **Q:** How can processes learn when the tree is completed?
- **Q:** How can a process know when it can output its own *dist* and *parent*?

- **Convergecast, once again**
 - Compute and recompute child pointers.
 - Process $\neq v_0$ sends *done* to its current parent after:
 - It has received responses to all its messages, so it believes it knows all its children, and
 - It has received *done* messages from all of those children.
 - The same process may be involved several (many) times, based on improved estimates.
Shortest Paths

• Moral: Unrestrained asynchrony can cause problems.

• What to do?

• Find out in 6.852/18.437, Distributed Algorithms!
What’s Next?

• 6.852/18.437 Distributed Algorithms
• Basic grad course
• Covers synchronous, asynchronous, and timing-based algorithms

• Synchronous algorithms:
 – Leader election
 – Building various kinds of spanning trees
 – Maximal Independent Sets and other network structures
 – Fault tolerance
 – Fault-tolerant consensus, commit, and related problems
Asynchronous Algorithms

- Asynchronous network model
- Leader election, network structures.
- Algorithm design techniques:
 - Synchronizers
 - Logical time
 - Global snapshots, stable property detection.
- Asynchronous shared-memory model
- Mutual exclusion, resource allocation
- Fault tolerance
- Fault-tolerant consensus and related problems
- Atomic data objects, atomic snapshots
- Transformations between models.
- Self-stabilizing algorithms
And More

- Timing-based algorithms
 - Models
 - Revisit some problems
 - New problems, like clock synchronization.

- Newer work (maybe):
 - Dynamic network algorithms
 - Wireless networks
 - Insect colony algorithms and other biological distributed algorithms