6.046 pre-requisites:
Data structures such as heaps, trees, graphs
Algorithms for sorting, shortest paths,
graph search, dynamic programming

Several modules:
Divide & Conquer - FFT, randomized algo's
Optimization - greedy, dynamic prog
Network Flow
Intractability (and dealing with it)
Linear programming
Sublinear algorithms, approximation algo's
Advanced Topics

Read course information & objectives on Stellar
Register on stellar for 6.046 (if you haven't and for a section already)
Pay particular attention to course collaboration policy!
Theme of today's lecture

Very similar problems can have very different complexity.

Recall: \(P \): class of problems solvable in polynomial time. \(O(n^k) \) for some constant \(k \)

Shortest paths in a graph \(O(v^2) \)

e.g.

\(NP \): class of problems verifiable in polynomial time.

Hamiltonian cycle a directed graph \(G(V,E) \) is a simple cycle that contains each vertex in \(V \).

Determining whether a graph has a Hamiltonian cycle is \(NP \)-complete but verifying that a cycle is Hamiltonian is easy.

\(P \subseteq NP \) but is \(P = NP \)?

\(NP \)-complete: problem is in \(NP \) and is as hard as any problem in \(NP \).

If any \(NPC \) problem can be solved in poly time, then every problem in \(NP \) has a poly time solution.
Interval Scheduling

Resources & requests
Requests 1, ..., n, single resource
S(i) start time, f(i) finish time S(i) < f(i)

Two requests i & j are compatible if they don't overlap, i.e., f(i) ≤ s(j)
or f(j) ≤ s(i)

Goal: Select a compatible subset of requests of maximum size.

Claim: We can solve this using a greedy algorithm.
A greedy algorithm is a myopic algorithm that processes the input one piece at a time with no apparent look ahead.
Greedy Interval Scheduling

1. Use a simple rule to select a request i.
2. Reject all requests incompatible with i.
3. Repeat until all requests are processed.

Possible rules?

1. Select request that starts earliest, i.e., minimum $s(i)$

 long one is earliest.

 bad!

2. Select request that is smallest, i.e., minimum $f(i) - s(i)$

 smallest.

 bad!

3. For each request find # incompatibles.
 Select the one with minimum # incompatibles.

 bad selection!

4. Select request with earliest finish time, i.e., minimum $f(i)$
Claim: Greedy algorithm outputs a list of intervals $(s(i), f(i)), (s(i_2), f(i_2)), \ldots, (s(i_k), f(i_k))$ such that $s(i_1) < f(i_1) \leq s(i_2) < f(i_2) \leq \ldots \leq s(i_k) < f(i_k)$.

Proof: If $f(i_j) > s(i_{j+1})$ interval $j+1$ intersects. Contradicts Step 2 of algorithm.

Claim: Given list of intervals L, greedy algorithm with earliest finish time produces k^* intervals, where k^* is optimal.

Proof: Induction on k^*.

Base case: $k^* = 1$. Any interval works.

Suppose claim holds for k^* and we are given a list of intervals whose optimal schedule has $k^* + 1$ intervals, namely

$S^* = [1, 2, \ldots, k^* + 1] = (s(j_1), f(j_1)), \ldots, (s(j_{k^*+1}), f(j_{k^*+1}))$
Say that \(S[1,...,k] = \langle s(i_1), f(i_1), \ldots, s(i_k), f(i_k) \rangle \) is what the greedy algorithm gives.

By construction \(f(i_1) \leq f(i_2) \) \(\leftarrow \) earliest finish time

Create schedule \(C(\text{this is valid!}) \)
\[S^{**} = \langle s(i_1), f(i_1) \rangle, \langle s(i_2), f(i_2) \rangle, \ldots, \langle s(i_{k+1}), f(i_{k+1}) \rangle \]

This is also optimal.

Define \(L' = \) set of intervals with \(s(i) > f(i_1) \)

Since \(S^{**} \) is optimal for \(L \), \(S^{**}[2, \ldots, k+1] \) is optimal for \(L' \).

An optimal schedule for \(L' \) has \(k^* \) size.

By inductive hypothesis, running greedy algorithm on \(L' \) should produce a schedule of size \(k^* \).

By construction, running greedy algorithm on \(L' \) gives us \(S[2, \ldots, k] \)

This means \(k-1 = k^* \) or \(k = k^* + 1 \) and \(S[1, \ldots, k] \) is optimal. 😊
Weighted Interval Scheduling

Each request i has weight $w(i)$

Schedule subset of requests with maximum weight.

$w=1$ $w=1$

$w=3$

greedy algo no longer works

Dynamic Programming

Subproblems are

$$R^x = \{ \text{request } j \in R \mid s(j) \geq x \}$$

If we set $x = f(i)$ then R^x is

the set of requests later than request i

in different subproblems, one for each request

Only need to solve each subproblem once & memoize
DP Guessing

Try each request i as a possible first.

If we pick request as the first request, then remaining requests are $R_{f(i)}$.

Note: There may be requests compatible with i that are not in $R_{f(i)}$ but we are picking i as the first request (i.e., we are going in order).

$$\text{opt}(R) = \max_{1 \leq i \leq n} (w_i + \text{opt}(R_{f(i)}))$$

Running time: $O(n^2)$

Exercise: Use sorting initially to reduce O to n^2. Overall complexity will be $O(n \log n)$.
requests 1, \ldots, n, s(i), f(i) as before
m machine types \(\mathcal{P} = \{ T_1, \ldots, T_m \} \)
weight of 1 for each request.
\(Q(i) \subseteq \mathcal{P} \) is set of machines that
request \(i \) can be serviced on.
Maximize the number of jobs that can
be scheduled on the \(m \) machines.

Can clearly check that any given subset
of jobs with machine assignments is legal.
Can \(k \leq n \) requests be scheduled? \(\mathsf{NP} \)-complete
Maximum requests should be scheduled. \(\mathsf{NP} \)-hard

Dealing with Intractability

1) Approximation algorithms: Guarantee
within some factor of optimal in poly time.
2) Pruning heuristics to reduce (possibly exp)
runtime on "real-world" examples
3) Greedy or other suboptimal heuristics that
work well in practice \(\leftarrow \) no guarantees