Dynamic Programming

Longest palindromic sequence
Optimal binary search trees
Alternating coin game

DP notions

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution based on optimal solutions of subproblems
3. Compute the value of an optimal solution in bottom-up fashion (recursion & memoization)
4. Construct an optimal solution from the computed information
Longest Palindromic Sequence

Def: A palindrome is a string that is unchanged when reversed

Examples: radar, civic, t, bb, redder

Given: A string \(X[i..n] \) \(n \geq 1 \)

To find: Longest palindrome that is a subsequence

Example: Given "character"

Output: "charac"

Answer will be \(\geq 1 \) in length

Strategy

\(L(i,j) \): length of longest palindromic subsequence of \(X[i..j] \) for \(i \leq j \)

def L(i, j):
 if i == j:
 return 1
 if \(X[i] == X[j] \):
 if i+1 == j:
 return 2
 else:
 return 2 + L(i+1, j-1)
 else:
 return max(L(i+1, j), L(i, j-1))

Exercise: compute the actual solution
Analysis

As written, program can run in exponential time: suppose all symbols $X[i]$ are distinct

$$T(n) = \begin{cases}
1 & n = 1 \\
2T(n-1) & n > 1
\end{cases}$$

$$= 2^{n-1}$$

Subproblems

But there are only $\binom{n}{2} = \Theta(n^2)$ distinct subproblems; each is an (i,j) pair with $i < j$.

By solving each subproblem only once, running time reduces to

$$\Theta(n^2) \cdot \Theta(1) = \Theta(n^2)$$

memoize $L(i,j)$, hash inputs to get output value, and look up hash table to see if the subproblem is already solved, else recurse.
Memoizing Vs. Iterating

1. Memoizing uses a dictionary for \(L(i, j) \) where value of \(L \) is looked up by using \(i, j \) as a key. It could just use a 2-D array here where null entries signify that the problem has not yet been solved.

2. Can solve subproblems in order of increasing \(j - i \) so smaller ones are solved first.

Optimal Binary Search Trees: CLRS 15.5

Given: keys \(k_1, k_2, \ldots, k_n \) \(k_1 < k_2 < \ldots, k_n \)
weights \(w_1, w_2, \ldots, w_n \) (search probabilities)

Find: BST \(T \) that minimizes:

\[
\sum_{i=1}^{n} w_i \cdot (\text{depth}_T(k_i) + 1)
\]

Example: \(w_i = p_i = \text{probability of searching for } k_i \)

Then, we are minimizing expected search cost.

(say we are representing an English-French dictionary and common words should have greater weight.)
Enumeration

Exponentially many trees

\[n = 2 \]

\[
\begin{align*}
1 & \quad w_1 + 2w_2 \\
2 & \quad 2w_1 + w_2
\end{align*}
\]

\[n = 3 \]

\[
\begin{align*}
1 & \quad 3w_1 + 2w_2 + w_3 \\
2 & \quad 2w_1 + 3w_2 + w_3 \\
3 & \quad w_1 + 3w_2 + 2w_3
\end{align*}
\]

Strategy

\[w(i, j) = w_i + w_{i+1} + \ldots + w_j \]

\[e(i, j) = \text{cost of optimal BST on } K_i, K_{i+1}, \ldots, K_j \]

Want \[e(1, n) \]

Greedy solution?

Pick \(K_r \) in some greedy fashion, e.g., \(W_r \) is maximum

"optimal substructure"

\[Kr \]

\[\begin{align*}
\text{keys } K_i & \ldots K_{r-1} \\
\text{e(c, r-1)} & \\
\text{keys } K_r, K_{r+1}, \ldots, K_j & \\
\text{e(r+1, j)}
\end{align*} \]

Greedy doesn't work
DP Strategy: Guess all roots

\[e(i, j) = \begin{cases}
 w_i & \text{if } i = j \\
 \min_{i \leq r \leq j} \left(e(i, r-1) + e(r+1, j) + w(i, j) \right) & \text{else}
\end{cases} \]

+ \(w(i, j) \) accounts for the root \(Kr \) as well as the increase in depth by 1 of all the other keys in the subtrees of \(Kr \).

(DP tries all ways of making local choice & takes advantage of overlapping subproblems.)

Complexity: \(\Theta(n^2) \cdot \Theta(n) = \Theta(n^3) \)

\[1 \leq i \leq j \leq n \]

\(\binom{n}{2} \) subproblems

Taking the min from \(i \) to \(j \)
Alternating Coin Game

Row of n coins of values V_1, \ldots, V_n are even.

In each turn, a player selects either the first or last coin from the row, removes it permanently, and receives the value of the coin.

Question
Can the first player always win?

Try: 4 42 39 17 25 6

Strategy:

1) Compare $V_1 + V_3 + \ldots + V_{n-1}$ against $V_2 + V_4 + \ldots + V_n$. And pick whichever is greater.

2) During the game, only pick from the chosen subset (you will always be able to!)

How to maximize the amount of money won assuming you move first?
Optimal Strategy

\[V(i, j) : \text{max value we can definitely win if it is our turn and only coins } v_i \ldots v_j \text{ remain} \]

\[V(i, i) \quad V(i, i+1) \quad V(i, i+2) \quad V(i, i+3) \ldots \]

\text{for all values of } i

\[V(i, j) = \max \left\{ \begin{array}{l}
\langle \text{range becomes } (i+1, j) \rangle + v_i \\
\text{pick } v_i \\
\langle \text{range becomes } (i, j-1) \rangle + v_j \\
\text{pick } v_j
\end{array} \right\} \]
Solution

$v(i+1, j)$ subproblem with opponent picking

\Rightarrow we are guaranteed $\min \{V(i+1, j-1), V(i+2, j)\}$

Opponent picks v_j
Opponent picks v_{i+1}

We have:

$v(i, j) = \max \left\{ \min \left\{ \frac{v(i+1, j-1)}{v(i+2, j)} \right\} + v_i, \min \left\{ \frac{v(i, j-2)}{v(i+1, j-1)} \right\} + v_j \right\}$

Complexity?

$\Theta(n^2) \cdot \Theta(1) = \Theta(n^2)$

$\frac{\Theta(n^2)}{\text{# subproblems}} \cdot \Theta(1) = \Theta(n^2)$
Example of Greedy Failing for Optimal BST problem

Thanks to Nick Davis!

Choosing highest weight key of 2 as root doesn't work.