Approximation Algorithms I

Definitions

Vertex cover
Set cover
Partition

\{ NP-complete problems \}
\{ NP-hard \}

Approximation Algos & Schemes

An algorithm for a problem of size n has an approximation ratio $\rho(n)$ if for any input, algorithm produces a solution of cost C such that

$$\max \left(\frac{C}{C_{\text{opt}}} , \frac{C_{\text{opt}}}{C} \right) \leq \rho(n)$$

Algorithm is an $\rho(n)$-approximation algorithm.

An approximation scheme takes as input $\epsilon > 0$ and for any fixed ϵ, the scheme is a $(1+\epsilon)$-approximation algorithm.

Polynomial time approximation scheme (PTAS): polynomial in n

Fully PTAS: polynomial in n and $\frac{1}{\epsilon}$

$O(n^{2/\epsilon})$ PTAS not FPTAS.

$O(n^{1/\epsilon^2})$ FPTAS
Vertex Cover

Undirected graph $G(V, E)$
Find a subset $V' \subseteq V$ such that if (u, v) is an edge of G, then either $u \in V'$ or $v \in V'$ or both.
Find V' so $|V'|$ is minimum.

Approx-Vertex-Cover

$C \leftarrow \emptyset$
$E' \leftarrow E$

while $E' \neq \emptyset$

Pick $(u, v) \in E$ arbitrarily
$C \leftarrow C \cup \{u, v\}$
Delete from E' all edges incident on u or v

Return C

Runs in poly time. Produces a vertex cover.
How close to optimal?
Example

Approx-Vertex-Cover could pick \((b, c), (e, f), (d, g)\)
\[C = \{b, c, d, e, f, g\} \quad |C| = 6 \]
Optimal solution \(C_{opt} = \{b, d, e\} \quad |C_{opt}| = 3 \)

Approx-Vertex-Cover is a 2-approximation algorithm

Proof: Let \(A\) denote the edges that are picked.
Optimal cover \(C_{opt}\) must include at least one endpoint of each edge in \(A\) (and other edges).
No two edges in \(A\) share an endpoint.
\(|A|\) is a lower bound for \(|C_{opt}|, |C_{opt}| \geq |A|\)
Number of vertices in \(C = 2|A|\)
\[|C| \leq 2 |C_{opt}| \]

\(\sqrt{\text{ }}\)
Given a set X and a family of (possibly overlapping) subsets $S_1, S_2, \ldots, S_m \subseteq X$ such that
\[\bigcup_{i=1}^{m} S_i = X, \] find $C \subseteq \{1, 2, \ldots, m\}$ such that $\bigcup_{i \in C} S_i = X$, while minimizing $|C|$.

Approx_set_cover (on next page) selects S_1, S_4, S_5, S_3 in that order.

Optimal: S_3, S_4, S_5
Approx-Set-Cover

\[C = \emptyset \]

While elements in \(X \) remain

Pick largest \(S_i \) : \(C = C \cup S_i \)

Remove all elements in \(S_i \) from \(X \) and other \(S_j \)

Return \(C \)

Poly time, returns a cover

Approx-Set-Cover is a \((\ln(n)+1)\)-approximation algo

Proof: Assume there is a cover \(C_{\text{opt}} \) \(|C_{\text{opt}}| = t \)

Let \(X_k \) be set of elements in iteration \(k \) \((X_0 = X) \)

\(\forall k, X_k \) can be covered by \(t \) sets.

\(\Rightarrow \) one of them covers at least \(\frac{|X_k|}{t} \) elements.

\(\Rightarrow \) algo picks a set of (current) size \(\geq \frac{|X_k|}{t} \)

\(\Rightarrow \) \(\forall k \) \(|X_{k+1}| \leq (1 - \frac{1}{t})|X_k| \)

[More careful analysis (see CLRS, Thm 35) relates \(\ln(n) \) to harmonic numbers. \(t \) should shrink!]
Proof (contd.)

\[\forall k, |X_{k+1}| \leq \left(1 - \frac{1}{e}\right) |X_k| \]

\[\Rightarrow \forall k, |X_k| \leq \left(1 - \frac{1}{e}\right)^k n \]

\[\leq e^{-k/t} \cdot n \]

Algorithm terminates when \(|X_k| < 1 \), i.e., \(|X_k| = 0 \) and cost = \(k \).

\[e^{-k/t} \cdot n < 1 \]

\[e^{k/t} > n \]

When \(\frac{k}{t} > \ln(n) \) and algorithm terminates.

So we have an \((\ln(n)+1) \)-approximation algorithm.

\[\times \]

Approximation ratio gets worse for larger problems.
Partition

Set S of n items with weights s_1, \ldots, s_n

Assume $s_1 \geq s_2 \geq \ldots \geq s_n$ WLOG

Partition into A and B to minimize

$$\max \left(\frac{\leq s_i}{\text{w}(A)}, \frac{\leq s_i}{\text{w}(B)} \right)$$

Define $2L = \sum_{i=1}^{n} s_i = \text{w}(S)$

Optimum solution $\Rightarrow L$.

Want a PTAS. Note: 2-approx algo trivial.

(FPTAS also exist)
Approx - Partition

Define \(m = \left\lceil \frac{1}{\epsilon} \right\rceil - 1 \) \(\epsilon \approx \frac{1}{m+1} \)

First phase: Find an optimal partition \(A', B' \)
of \(S_1, \ldots, S_m \)

Second phase: \(A \leftarrow A', B \leftarrow B' \)
for \(i = m+1 \) to \(n \)
if \(w(A) \leq w(B) \)
\(A = A \cup \{i\} \)
else \(B = B \cup \{i\} \)

Approx - Partition is PTAS.

WLOG, assume \(w(A) \geq w(B) \)
approximation ratio \(= \frac{w(A)}{L} \)

\(A \)
\(B \)
\(k \) is the LAST item added to \(A \).
Could have been added in first or second phase.
\[\frac{1}{2} \leq \frac{s_k}{k} \leq \frac{2L + s_k}{2L} \leq 1 + \frac{s_k}{2L} \]

Since \(s_1, s_2, \ldots, s_m \) are all \(\geq \frac{L}{k} \), we can say that:

\[\frac{s_k}{k} \leq \frac{L}{k} \]

We know \(k \) is added to \(A \) for the \(m \) items.

This is why \(k \) was added to \(A \).

We have increased after this addition to \(A \).

This means \(A = A' \).

We have an optimal partition.
Approx Vertex Cover - Natural

\[C \leftarrow \emptyset \]
\[E' \leftarrow E \]
while \(E' \neq \emptyset \)
 pick \(v \) with maximum degree
 \[C = C \cup \{v\} \]
 Remove \(v \) and all incident edges from \(E' \)
return \(C \)

A BAD EXAMPLE

\[k! \text{ vertices of degree } k \]

\[\frac{k!}{k} \text{ vertices of degree } k \]

\[\frac{k!}{k-1} \text{ vertices of degree } k-1 \]

\[k! \text{ vertices of degree 1} \]

Algorithm may end up picking all the bottom vertices
\[\text{Sol} = k! \left(\frac{1}{k} + \frac{1}{k-1} + \cdots \right) \leq k! \log k. \]
\[\log k \text{ worse} \]
Approx-Vertex-Cover-Natural is \(\log(n) \)-Approx

\[|G| = n(\#\text{edges}) \quad G = G_0 \]

\[G_0 \to G_1 \to G_2 \ldots \quad G_m \text{ with vertex selection \& edge deletion} \]

\[m = |\mathcal{C}^*| \quad \# \text{vertices in optimal vertex cover} \]

Picking maximum degree vertex of \(G_{i-1} \)

\[\Rightarrow \text{call the degree } d_i \]

\[\Rightarrow \text{delete edges incident on picked vertex to get } G_i \]

\[|G_m| = |G_0| - \sum_{i=1}^{m} d_i \]

\[\#\text{edges} \]

Also, \(\sum_{i=1}^{m} d_i > \sum_{i=1}^{m} \frac{|G_{i-1}|}{m} \)

(because given \(|G_{i-1}| \) edges can be covered by \(m \) vertices we know there is a vertex with degree at least \(\frac{|G_{i-1}|}{m} \))

\[\Rightarrow \sum_{i=1}^{m} \frac{|G_m|}{m} \leq \frac{|G_m|}{m} \]

\[= |G_m| \]

\[\Rightarrow |G_0| - |G_m| > |G_m| \Rightarrow \text{smaller than } \sum_{i=1}^{m} d_i \Rightarrow m \cdot \log(n) \text{ vertex cover.} \]