Problem 4-1. Extreme FIFO Queues [25 points]

Design a data structure that maintains a FIFO queue of integers, supporting operations ENQUEUE, DEQUEUE, and FIND-MIN, each in $O(1)$ amortized time. In other words, any sequence of m operations should take time $O(m)$. You may assume that, in any execution, all the items that get enqueued are distinct.

(a) [5 points] Describe your data structure. Include clear invariants describing its key properties. *Hint:* Use an actual queue plus auxiliary data structure(s) for bookkeeping.

(b) [5 points] Describe carefully, in words or pseudo-code, your ENQUEUE, DEQUEUE and FIND-MIN procedures.

(c) [5 points] Prove that your operations give the right answers. *Hint:* You may want to prove that their correctness follows from your data structure invariants. In that case you should also sketch arguments for why the invariants hold.

(d) [10 points] Analyze the time complexity: the worst-case cost for each operation, and the amortized cost of any sequence of m operations.
Problem 4-2. Quicksort Analysis [25 points]

In this problem, we will analyze the time complexity of QUICKSORT in terms of error probabilities, rather than in terms of expectation. Suppose the array to be sorted is \(A[1..n] \), and write \(x_i \) for the element that starts in array location \(A[i] \) (before QUICKSORT is called). Assume that all the \(x_i \) values are distinct.

In solving this problem, it will be useful to recall a claim from lecture. Here it is, slightly restated:

Claim: Let \(c > 1 \) be a real constant, and let \(\alpha \) be a positive integer. Then, with probability at least
\[
1 - \frac{1}{n^\alpha},
\]
\(3(\alpha + c) \log n \) tosses of a fair coin produce at least \(c \log n \) heads.

Note: High probability bounds, and this Claim, will be covered in Tuesday’s lecture.

(a) [5 points] Consider a particular element \(x_i \). Consider a recursive call of QUICKSORT on subarray \(A[p..p+m−1] \) of size \(m \geq 2 \) which includes element \(x_i \). Prove that, with probability at least \(\frac{1}{2} \), either this call to QUICKSORT chooses \(x_i \) as the pivot element, or the next recursive call to QUICKSORT containing \(x_i \) involves a subarray of size at most \(\frac{3}{4} m \).

(b) [9 points] Consider a particular element \(x_i \). Prove that, with probability at least \(1 - \frac{1}{n^\alpha} \),

the total number of times the algorithm compares \(x_i \) with pivots is at most \(d \log n \), for a particular constant \(d \). Give a value for \(d \) explicitly.

(c) [6 points] Now consider all of the elements \(x_1, x_2, \ldots, x_n \). Apply your result from part (b) to prove that, with probability at least \(1 - \frac{1}{n^\alpha} \), the total number of comparisons made by QUICKSORT on the given array input is at most \(d' n \log n \), for a particular constant \(d' \). Give a value for \(d' \) explicitly. **Hint:** The Union Bound may be useful for your analysis.

(d) [5 points] Generalize your results above to obtain a bound on the number of comparisons made by QUICKSORT that holds with probability \(1 - \frac{1}{n^\alpha} \), for any positive integer \(\alpha \), rather than just probability \(1 - \frac{1}{n} \) (i.e., \(\alpha = 1 \)).