Problem 4-1. **Extreme FIFO Queues** [25 points]

Design a data structure that maintains a FIFO queue of integers, supporting operations ENQUEUE, DEQUEUE, and FIND-MIN, each in $O(1)$ amortized time. In other words, any sequence of m operations should take time $O(m)$. You may assume that, in any execution, all the items that get enqueued are distinct.

(a) [5 points] Describe your data structure. Include clear invariants describing its key properties. **Hint:** Use an actual queue plus auxiliary data structure(s) for bookkeeping.

Solution: For example, we might use a FIFO queue $Main$ and an auxiliary linked list, Min, satisfying the following invariants:

1. Item x appears in Min if and only if x is the minimum element of some tail-segment of $Main$.
2. Min is sorted in increasing order, front to back.

(b) [5 points] Describe carefully, in words or pseudo-code, your ENQUEUE, DEQUEUE and FIND-MIN procedures.

Solution:
ENQUEUE(x)
1. Add x to the end of $Main$.
2. Starting at the end of the list, examine elements of Min and remove those that are larger than x; stop examining elements if you encounter one that is smaller than x.
3. Add x to the end of Min.

DEQUEUE()
1. Remove and return the first element x of $Main$.
2. If x is the first element in Min, remove it.

FIND-MIN()
1. Return the first element of Min.

(c) [5 points] Prove that your operations give the right answers. Hint: You may want to prove that their correctness follows from your data structure invariants. In that case you should also sketch arguments for why the invariants hold.

Solution: This solution is for the choices of data structure and procedures given above; your own may be different.

The only two operations that return answers are DEQUEUE and FIND-MIN. DEQUEUE returns the first element of $Main$, which is correct because $Main$ maintains the actual queue. FIND-MIN returns the first element of Min. This is the smallest element of Min because Min is sorted in increasing order (by Invariant 2 above). The smallest element of $Main$ is the minimum of the tail-segment consisting of all of $Main$, which is the smallest of all the tail-mins of $Main$. This is the smallest element in Min (by Invariant 1). Therefore, FIND-MIN returns the smallest element of $Main$, as needed.

Proofs for the invariants: The invariants are vacuously true in the initial state. We argue that ENQUEUE and DEQUEUE preserve them; FIND-MIN does not affect them.

It is easy to see that both operations preserve Invariant 2: Since a DEQUEUE operation can only remove an element from Min, the order of the remaining elements is preserved. For ENQUEUE(x), we remove elements from the end of Min until we find one that is less than x, and then add x to the end of Min. Because Min was in sorted order prior to the ENQUEUE(x), when we stop removing elements, we know that all the remaining elements in Min are less than x. Since we do not change the order of any elements previously in Min, all the elements are still in sorted order.

So it remains to prove Invariant 1. There are two directions:

- The new Min list contains all the tail-mins.

 ENQUEUE(x): x is the minimum element of the singleton tail-segment of $Main$ and it is added to Min. Additionally, since every tail-segment now contains the value x, all elements with value greater than x can no longer be tail-mins. So, after their removal, Min still contains all the tail-mins.
DEQUEUE of element x: The only element that could be removed from Min is x. It is OK to remove x, because it can no longer be a tail-min since it is no longer in $Main$. All other tail-mins are remain in Min.

- All elements of the new Min are tail-mins.

ENQUEUE(x): x is the only value that is added to Min. It is the min of the singleton tail-segment. Every other element y remaining in the Min list was a tail-min before the ENQUEUE and is less than x. So y is still a tail-min after the ENQUEUE.

DEQUEUE of element x: Then we claim that, if x is in Min before the operation, it is the first element of Min and therefore is removed from Min as well. Now, if x is in Min, it must be the minimum element of some tail of $Main$. This tail must include the entire queue, since x is the first element of $Main$. So x must be the smallest element in Min, which means it is the first element of Min. Every other element y in Min was a tail-min before the DEQUEUE, and is still a tail-min after the DEQUEUE.

(d) [10 points] Analyze the time complexity: the worst-case cost for each operation, and the amortized cost of any sequence of m operations.

Solution: DEQUEUE and FIND-MIN are $O(1)$ operations, in the worst case.

ENQUEUE is $O(m)$ in the worst case. To see that the cost can be this large, suppose that ENQUEUE operations are performed for the elements 2, 3, 4, ..., $m−1$, m, in order. After these, Min contains $\{2, 3, 4, \ldots, m−1, m\}$. Then perform ENQUEUE(1). This takes $\Omega(m)$ time because all the other entries from Min are removed one by one.

However, the amortized cost of any sequence of m operations is $O(m)$. To see this, we use a potential argument. First, define the actual costs of the operations as follows:

- The cost of any FIND-MIN operation is 1.
- The cost of any DEQUEUE operation is 2, for removal from $Main$ and possible removal from Min.
- The cost of an ENQUEUE operation is $2 + s$, where s is the number of elements removed from Min. Define the potential function $\Phi = |Min|$.

Now consider a sequence o_1, o_2, \ldots, o_m of operations and let c_i denote the actual cost of operation o_i. Let Φ_i denote the value of the potential function after exactly i operations; let Φ_0 denote the initial value of Φ, which here is 0. Define the amortized cost \hat{c}_i of operation instance o_i to be $c_i + \Phi_i − \Phi_{i−1}$.

We claim that $\hat{c}_i \leq 2$ for every i. If we show this, then we know that the actual cost of the entire sequence of operations satisfies:

$$\sum_{i=1}^{m} c_i = \sum_{i=1}^{m} \hat{c}_i + \Phi_0 − \Phi_m \leq \sum_{i=1}^{m} \hat{c}_i \leq 2m.$$

This yields the needed $O(m)$ amortized bound.
To show that $\hat{c}_i \leq 2$ for every i, we consider the three types of operations. If o_i is a FIND-MIN operation, then

$$\hat{c}_i = 1 + \Phi_i - \Phi_{i-1} = 1 < 2.$$

If o_i is a DEQUEUE, then since the lengths of the lists cannot increase, we have:

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \leq 2 + 0 \leq 2.$$

If o_i is an ENQUEUE, then

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \leq 2 + s = 2,$$

where s is the number of elements removed from Min. Thus, in every case, $\hat{c}_i \leq 2$, as claimed.

Alternatively, we could use the accounting method. Use the same actual costs as above. Assign each ENQUEUE an amortized cost of 3, each DEQUEUE an amortized cost of 2, and each FIND-MIN an amortized cost of 1. Then we must argue that

$$\sum_{i=1}^{m} \hat{c}_i \geq \sum_{i=1}^{m} c_i$$

for any sequence of operations and costs as above. This is so because each $\text{ENQUEUE}(x)$ contributes an amortized cost of 3, which covers its own actual cost of 2 plus the possible cost of removing x from Min later.

Problem 4-2. Quicksort Analysis [25 points]

In this problem, we will analyze the time complexity of QUICKSORT in terms of error probabilities, rather than in terms of expectation. Suppose the array to be sorted is $A[1..n]$, and write x_i for the element that starts in array location $A[i]$ (before QUICKSORT is called). Assume that all the x_i values are distinct.

In solving this problem, it will be useful to recall a claim from lecture. Here it is, slightly restated:

Claim: Let $c > 1$ be a real constant, and let α be a positive integer. Then, with probability at least $1 - \frac{1}{m}$, $3(\alpha + c) \lg n$ tosses of a fair coin produce at least $c \lg n$ heads.

Note: High probability bounds, and this Claim, will be covered in Tuesday’s lecture.

(a) [5 points] Consider a particular element x_i. Consider a recursive call of QUICKSORT on subarray $A[p..p+m-1]$ of size $m \geq 2$ which includes element x_i. Prove that, with probability at least $\frac{1}{2}$, either this call to QUICKSORT chooses x_i as the pivot element, or the next recursive call to QUICKSORT containing x_i involves a subarray of size at most $\frac{3}{4}m$.
Solution: Suppose the pivot value is x. If $\lfloor \frac{m}{4} \rfloor + 1 \leq x \leq m - \lfloor \frac{m}{4} \rfloor$, then both subarrays produced by the partition have size at most $\frac{3n}{4}$. Moreover, the number of values of x in this range is at least $\frac{n}{2}$, so the probability of choosing such a value is at least $\frac{1}{2}$. Then either x_i is the pivot value or it is in one of the two segments.

(b) [9 points] Consider a particular element x_i. Prove that, with probability at least $1 - \frac{1}{n^2}$, the total number of times the algorithm compares x_i with pivots is at most $d \lg n$, for a particular constant d. Give a value for d explicitly.

Solution: We use part (a) and the Claim. By part (a), each time QUICKSORT is called for a subarray containing x_i, with probability at least $\frac{1}{2}$, either x_i is chosen as the pivot value or else the size of the subarray containing x_i reduces to at most $\frac{3}{4}$ of what it was before the call. Let’s say that a call is “successful” if either of these two cases happens. That is, with probability at least $\frac{1}{2}$, the call is successful.

Now, at most $\log_{4/3} n$ successful calls can occur for subarrays containing x_i during an execution, because after that many successful calls, the size of the subarray containing x_i would be reduced to 1. Using the change of base formula for logarithms, $\log_{4/3} n = c \lg n$, where $c = \log_{4/3} 2$.

Now we can model the sequence of calls to QUICKSORT for subarrays containing x_i as a sequence of tosses of a fair coin, where heads corresponds to successful calls. By the Claim, with $c = \log_{4/3} 2$ and $\alpha = 2$, we conclude that, with probability at least $1 - \frac{1}{n^2}$, we have at least $c \lg n$ successful calls within $d \lg n$ total calls, where $d = 3(2 + c)$. Each comparison of x_i with a pivot occurs as part of one of these calls, so with probability at least $1 - \frac{1}{n^2}$, the total number of times the algorithm compares x_i with pivots is at most $d \lg n = 3(2 + c) \lg n = 3(2 + \log_{4/3} 2) \lg n$. The required value of d is $3(2 + \log_{4/3} 2) \leq 14$.

(c) [6 points] Now consider all of the elements x_1, x_2, \ldots, x_n. Apply your result from part (b) to prove that, with probability at least $1 - \frac{1}{n}$, the total number of comparisons made by QUICKSORT on the given array input is at most $d'n \lg n$, for a particular constant d'. Give a value for d' explicitly. Hint: The Union Bound may be useful for your analysis.

Solution: Using a union bound for all the n elements of the original array A, we get that, with probability at least $1 - n(\frac{1}{n^2}) = 1 - \frac{1}{n}$, every value in the array is compared with pivots at most $d \lg n$ times, with d as in part (b). Therefore, with probability at least $1 - \frac{1}{n}$, the total number of such comparisons is at most $dn \lg n$. Using $d' = d$ works fine.

Since all the comparisons made during execution of QUICKSORT involve comparison of some element with a pivot, we get the same probabilistic bound for the total number of comparisons.
(d) [5 points] Generalize your results above to obtain a bound on the number of comparisons made by QUICKSORT that holds with probability $1 - \frac{1}{n^\alpha}$, for any positive integer α, rather than just probability $1 - \frac{1}{n}$ (i.e., $\alpha = 1$).

Solution: The modifications are easy. The Claim and part (a) are unchanged. For part (b), we now prove that with probability at least $1 - \frac{1}{n^{\alpha+1}}$, the total number of times the algorithm compares x_i with pivots is at most $d \lg n$, for $d = 3(\alpha + c)$. The argument is the same as before, but we use the Claim with the value of α instead of 2. Then for part (c), we show that with probability at least $1 - \frac{1}{n^\alpha}$, the total number of times the algorithm compares any value with a pivot is at most $dn \lg n$, where $d = 3(\alpha + c)$.
