Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
April 7, 2016
Instructors: Nancy Lynch, Aleksander Madry, and Bruce Tidor

Problem Set 5

All parts are due Tuesday, April 26 at 11:59PM. Note the unusual due date. You have some extra days, because of Quiz 2. Please download the .zip archive for this problem set, and refer to the README.txt file for instructions on preparing your solutions.

Part A

Problem 5-1. [25 points] Running to Lose Weight Donald is trying to lose weight by running every day from MIT to Newton Center. The routes he chooses vary from day to day. This problem is designed to help him plan his route to maximize his weight loss.

In every case, all of Donald’s routes are modeled as a directed graph $G = (V, E)$, where the vertices V correspond to a particular set of intermediate points and the edges E are directed road segments. The graph has a source node s, which represents MIT, and a target node t, which represents Newton Center.

Thanks to his Fitness Tracker, Donald knows exactly how many calories he expends when he runs on each segment. Unfortunately, some segments pass by fast food restaurants and Donald, being weak-willed, cannot resist stopping at each restaurant he passes and getting a small snack.

Specifically, every directed road segment $e \in E$ has two associated calorie measures: $loss(e)$, a constant, positive integer representing the number of calories Donald expends by running segment e, and $gain(e)$, a constant, positive integer representing the number of calories Donald ingests by snacking on segment e.

(a) [5 points] First suppose that G is a directed acyclic graph. Design an algorithm (using very clear English or pseudocode) that outputs a path in G that Donald can use to run from MIT to Newton Center, and that results in the largest possible net calorie loss (that is, loss minus gain—the result may be positive or negative). Your algorithm should run in $O(V + E)$ time. Include an analysis.

Solution: We define a weighted version of graph G in which the weight of each edge e is $gain(e) - loss(e)$. We can then use the DAG traversal algorithm as shown in lecture to compute the shortest path from s to t (see also CLRS 24.2, p.655). To summarize the DAG traversal algorithm, we first topologically sort the graph and then relax the edges connected to the vertices in the order given by the topological sort. As stated previously, the weight of each edge, e, is $weight(e) = gain(e) - loss(e)$. We want to minimize the total weight. The path may be found by maintaining the pointers to the previous node that gives the current shortest path to the current node. The DAG traversal algorithm results in a $\Theta(V + E)$ runtime.
(b) [6 points] Donald decides it might be a good idea to impose some constraints on where he runs. Namely, he will limit his routes to just those for which, at no point during the run (that is, after no prefix of the path) does he have a net positive weight gain. (He is still weak-willed, so if he traverses a segment with restaurants, he will still snack.)

Describe another algorithm (using clear English and pseudocode) that outputs a path that Donald can use to run from MIT to Newton Center, with the new constraint, and that results in the largest possible net calorie loss among the possible paths. If this is not possible, your algorithm should say that. Again, your algorithm should run in $O(V + E)$ time. Include an analysis.

Solution: We use the same strategy as part (a) except we modify the DAG traversal algorithm such that if the distance from s to any other node is positive, we replace this distance with infinity. Specifically, we modify the DAG traversal procedure in the following way:

```
DAGShortestNoPositiveWeightPaths(G, w, s, t)
1      topologically sort the vertices of G
2      Initialize s as the single source.
3      Set $s.d = 0$ and $v.d = w(s, v)$ for all $v \in G.Adj[s]$.
4      Set all other $v'.d = \infty$ for all $v' \notin G.Adj[s]$.
5      for each vertex $u$, taken in topologically sorted order
6          for each vertex $v \in G.Adj[u]$
7              if $v.d > u.d + w(u, v)$ and $u.d + w(u, v) \leq 0$
8                  $v.d = u.d + w(u, v)$
9                  $v.\pi = u$
10             if $t.d = \infty$:
11                return "Impossible"
12         else
13             return the path by using the $t.\pi$ pointers.
```

Since the only change to the DAG traversal procedure is to make positive weight paths have infinite weight, the procedure still runs in time $\Theta(V + E)$.

(c) [7 points] Donald realizes that his idea from part (b) wasn’t that great (see Fig. 1 for a counterexample), since it sometimes rules out the maximum-calorie-loss paths. So his next idea is to expand his set of possible routes to include some less-direct routes, including routes that revisit some locations and re-traverse some segments. Now the routes are modeled by a graph G that is an arbitrary (not necessarily acyclic) directed graph in which the destination t is reachable from the source s.

Design an algorithm that outputs a path in G that Donald can use to run from MIT to Newton Center, and that results in the largest possible net calorie loss. If there is no bound on how many calories Donald might expend, then your algorithm should
just output “unbounded weight loss”, without producing any path. Analyze your algorithm.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Example of a case when Donald’s strategy from (b) fails. The optimal path of greatest weight loss contains the edge with weight 10, but using the strategy from (b), Donald would prune this path because the second edge on the path results in a net positive weight gain.}
\end{figure}

Solution: First, reverse the direction of the edges of G and run BFS or DFS from t to determine all nodes $v \in V$ that can reach t. Then, run DFS/BFS from s to determine all nodes reachable from s. Then, the intersection of these two sets of nodes determined from the BFS/DFS from s and t is the set of nodes that are contained in paths from s to t. Create a subgraph G' induced by this set of nodes.

Run Bellman-Ford on G'. If Bellman-Ford detects a negative cycle, return “unbounded weight loss”. Otherwise, return the path produced from the Bellman-Ford algorithm.

The runtime analysis of this algorithm consists of the runtime of running two BFS/DFS from s and t and running Bellman-Ford on G'. The first part of this algorithm results in $\Theta(V + E)$ time and Bellman-Ford takes $\Theta(VE)$ time. Therefore, our algorithm runs in $O(VE)$ time.

d [7 points] Donald really likes the idea that he could lose an unbounded amount of weight, but he does not actually want to run in cycles forever. Rather, he would like to run just long enough to be sure that, when he reaches Newton Center, he will have expended “enough” calories.

So, now you are given not just a weighted directed graph G, but also a cut-off value $enough$, with polynomial value with respect to $|V|$ (in other words you can assume $enough \leq |V|^c$ for some constant c), representing Donald’s net calorie loss goal for
one day. Solve the same problem as in part (d), except that, in case there is no bound on the possible weight loss, instead of just outputting “unbounded weight loss”, your algorithm should output some (not necessarily simple) path on which Donald could run to achieve enough weight loss. Analyze your algorithm.

Solution: We perform the same procedure as in part (c) except now, when Bellman-Ford finds a negative weight cycle in G', we mark the first node that we find (or return it) that is part of a negative weight cycle. See the pseudocode below for how this is done:

```plaintext
BELLMANFORDRETURNNEGATIVECTYCLENODE(G, w, s)
1  marked_node = NIL
2  INITIALIZE-SINGLE-SOURCE(G, s)
3  for i = 1 to |V[G]| - 1
4      for each edge (u, v) ∈ E[G]
5          RELAX(u, v, w)
6      for each edge (u, v) ∈ E[G]
7          if d[v] > d[u] + w(u, v)
8             RELAX(u, v, w)
9             marked_node = v
10    return marked_node
```

Suppose this node is v. We can find a negative cycle containing v by using one more iteration of BF and using the parent pointers resulting from this iteration. See the pseudocode below for the procedure for finding the negative weight cycle given v:

```plaintext
RETURNNEGATIVECTYCLE(v)
1  cycle_vertices = []
2  u = v  // remember starting vertex
3  repeat
4    ADD v TO cycle_vertices
5    u = u.pi
6  until u = v
7  return cycle_vertices
```

Suppose that c_3 is the cost of this negative weight cycle. We calculate d such that $d(-c_3) \geq enough + c_1 + c_2$ where c_1 is the cost of a path from s to v and c_2 is the cost of a path from v to t. We can find the path from s to v by using DFS from s and the path from v to t by DFS from v. Once we have found the path from s to v and the path from v to t, we can calculate the weight loss along these two paths. (Alternatively, reading the parent pointers from t resulting from the run of the BELLMANFORDRETURNNEGATIVECTYCLENODE algorithm should point you to a negative weight cycle, but you would have to be careful that it points you to the negative weight cycle containing v.)
The path from s to v, the negative cycle which is traversed $\lceil d \rceil$ times, and the path from v to t consists of the path that Donald would take to achieve *enough* calorie loss. The runtime of this algorithm is the same as part (c), $\Theta(VE)$.
Problem 5-2. [25 points] Properties of Dijkstra’s Algorithm

Dijkstra’s algorithm has many interesting properties. This problem will explore some of them.

Assumptions and notation: We assume that \(G = (V, E, \text{weight}) \) is a weighted directed graph, and \(s \in V \) is a designated source node. We write \(\delta(u) \) for the minimum distance from \(s \) to \(u \) in the graph (measured in terms of the sum of edge weights).

At any point in an execution of the algorithm between iterations of the main loop, we define \(S \) to be the subset of \(V \) consisting of the nodes that have already been processed, and \(Q = V - S \). For any node \(u \), \(d[u] \) is the currently-recorded distance from \(s \) to \(u \). We also define \(\delta_S(u) \) to be the minimum length of a path from \(s \) to \(u \) in which all nodes, except possibly the final node \(u \), are in \(S \). (As a special case, \(\delta_S(s) = 0 \).) If there is no such path, then \(\delta_S(u) = \infty \).

The first property is:

Property 1: After any number of iterations of the main loop:
If \(u \) is any node in \(V \), then \(d[u] \geq \delta(u) \).

That is, no node ever acquires an estimate that is smaller than its real distance from \(s \).

(a) [5 points] Explain carefully why Property 1 is true.

Hint: You might want to use induction on the number of steps in which a node is moved from \(Q \) to \(S \).

Solution: We prove this by induction. The base case holds since we initially set \(d[s] = \delta_S(s) = 0 \). We assume as our inductive step that the property holds at some point, and a step occurs in which a node \(w \) is added to \(S \). Then we relax all outgoing edges from \(w \). For each outgoing neighbor \(u \), if \(d[w] + \text{weight}(w, u) < d[u] \), then we reduce \(d[u] \) to \(d[w] + \text{weight}(w, u) \). We must argue that this change cannot reduce the value of \(d[u] \) to less than \(\delta(u) \).

By our inductive assumption, we know that \(d[w] \geq \delta(w) \). Therefore, \(d[w] + \text{weight}(w, u) \geq \delta(w) + \text{weight}(w, u) \geq \delta(u) \). Therefore, the reduced value of \(d[u] \) is still \(\geq \delta(u) \).

The next two properties are:

Property 2: After any number of iterations of the main loop:
If \(u \in S \) then \(d[u] = \delta(u) \).

That is, all nodes in \(S \) record their correct distances.

Property 3: After any number of iterations of the main loop:
If \(u \) is any node, then \(d[u] = \delta_S(u) \).

That is, every node in the entire graph records its best distance along a path that goes entirely through \(S \), except possibly for \(u \) itself.

We consider them together. It’s easy to see that they hold initially. The key thing to show is that they are “preserved” by any iteration of the main loop. (This is essentially induction, again.) So, assume that Properties 2 and 3 hold at some point during the execution, and then a new node \(w \) is selected from \(Q \) and added to \(S \).
(b) [8 points] Explain carefully why Property 2 must hold after this step.

Hint: Show first that, for the \(w \) that is chosen at this step, \(d[w] = \delta(w) \).

Solution: We first show the hint, i.e., that \(d[w] = \delta(w) \) for the \(w \) that is chosen at this step. We assume for contradiction that \(d[w] \neq \delta(w) \). By Property 1, we know that \(d[w] > \delta(w) \) so there must be a shorter path from \(s \) to \(w \). Let \(p \) be such a shorter path from \(s \) to \(w \). Then \(\text{length}(p) < d[w] \).

By Property 3 (before the step), \(d[w] = \delta_S(w) \), that is, \(d[w] \) is the shortest distance from \(s \) to \(w \) on any path that passes through only nodes in \(S \). Therefore, the shorter path \(p \) must pass through at least one node in \(Q \), other than \(w \). Let \(x \) be the first node different from \(w \) that occurs on path \(p \).

By Property 3, \(d[x] = \delta_S(x) \). Since the part of \(p \) up to node \(x \) passes only through nodes in \(S \), we know that \(\delta_S(x) \leq \text{length}(p) \). Since we know that \(\text{length}(p) < d[w] \), we can combine the various inequalities and conclude that \(d[x] < d[w] \). But this contradicts the choice of \(w \) as the element of \(Q \) with the smallest \(d \)-value. This finishes the proof of the hint.

Now that we have shown that \(d[w] = \delta(w) \) when \(w \) is chosen from \(Q \) and added into \(S \). This property remains true after the step since \(d[w] \) is not changed during the step.

(c) [7 points] Explain carefully why Property 3 must hold after this step.

Solution: We consider three cases to prove Property 3:

1. \(u \) is already in \(S \) before the step,
2. \(u = w \), and
3. \(u \) is still in \(Q \) after the step.

Cases 1 and 2 follows directly since we have that \(d[u] = \delta(u) = \delta_S(u) \) by Properties 2 and 3 and the hint for Property 2. It remains to consider Case 3, where \(u \) is still in \(Q \) after the step.

When \(w \) is added to \(S \), a couple of things could occur. First, the shortest distance to \(u \) through \(S \) might not change, in which case Property 3 from the previous step still holds. On the other hand, \(u \) might acquire a shortest distance through only \(S \) nodes than what it had before the step; such a path must pass through \(w \). In this case, let \(p \) be a shortest such path, so \(\text{length}(p) \) is the new value of \(\delta_S(u) \).

We claim that \(w \) must be \(u \)'s immediate predecessor on \(p \). Suppose for contradiction that some other node \(x \) is \(u \)'s immediate predecessor along \(p \). Then, \(d[x] = \delta_S(x) = \delta(x) \) by Properties 2 and 3. Thus, a shortest path to \(x \) passes through only nodes that were already in \(S \) before the step. So adding \(w \) to \(S \) could not decrease \(\delta_S(x) \), and so could not yield a shorter path to \(u \) through \(S \) with \(x \) as \(u \)'s immediate predecessor. This is a contradiction, so \(w \) must be \(u \)'s immediate predecessor on the new path.

Thus, the length of the new path \(p \), which is the new value of \(\delta_S(u) \), is \(d[w] + \text{weight}(w, u) \). When \(w \) gets put into \(S \), the edge \((w, u) \) gets relaxed. Therefore, we obtain \(d[u] = d[w] + \text{weight}(w, u) = \delta(w) + \text{weight}(w, u) \), and so \(d[u] = \delta_S(u) \).
The final property is:

Property 4: After any number of iterations of the main loop:

If \(u \in S \) and \(v \in Q \), then \(\delta(u) \leq \delta(v) \).

That is, all the nodes in \(S \) have distances from \(s \) that are less than or equal to those for the nodes in \(Q \).

(d) [5 points] Explain carefully why Property 4 is true.

Solution: We use induction to prove that Property 4 is true.

Since initially \(S = \emptyset \), the base case is trivially true. For the inductive step, we assume that sets of nodes \(S \) and \(Q \) satisfy this property and we add another node \(w \) into \(S \).

To show that \(\delta(w) \leq \delta(v) \) for every \(v \in Q \) after the step, we show that \(\delta(w) \leq \delta(v) \) for all other \(v \in Q \) before the step. Suppose for contradiction that there exists a node \(v \neq w \) where \(v \in Q \) such that \(\delta(v) < \delta(w) \).

Let \(p \) be a shortest path from \(s \) to \(v \), which has length \(\delta(v) \) and let \(x \) be the first node on \(p \) that is in \(Q \). Then, \(x \neq w \), because \(\delta(x) \leq \delta(v) \) but \(\delta(v) < \delta(w) \).

The path to \(x \) must be a shortest path to \(x \) (i.e., its length is \(\delta(x) \)). Since the path up to \(x \) contains only nodes in \(S \), we also know that \(\delta(x) = \delta_S(x) \). Therefore, \(\delta_S(x) \leq \delta(v) \).

So, we know the following facts:

1. \(\delta_S(x) \leq \delta(v) \),
2. \(\delta(v) < \delta(w) \),
3. and \(\delta(w) = \delta_S(w) \), by Property 2.

Putting these together, we get that \(\delta_S(x) < \delta_S(w) \). By Property 3, we can conclude that \(d[x] < d[w] \), which contradicts the choice of \(w \).
Part B

Problem 5-3. [50 points] Dijkstra and Some Variations

In this problem, you will implement Dijkstra’s shortest paths algorithm, which finds shortest paths in a weighted directed graph from a particular source node s to all nodes. Your implementation should use a min-priority queue, which is implemented by a min-heap. This should allow you to achieve time complexity $O((V + E) \log V)$ for a complete execution of Dijkstra’s algorithm. You will then adapt the implementation to solve the Single-Pair Shortest Path (SPSP) problem, that is, to determine the shortest path from a particular source node s to a particular target node t. Then, you will implement two heuristic improvements to try to solve the SPSP problem more efficiently, namely, bidirectional search and A*-search.

We provide a priority queue implementation, which you should use. You should need the PriorityQueue.add(item, priority) method, which adds an item with the indicated priority. This can also be used to change an item’s priority. All of the other methods should be fairly straightforward, and you should look at them all before you begin programming.

(a) [15 points] Dijkstra’s algorithm:

Implement Dijkstra’s algorithm. The input to your algorithm should be a weighted directed graph $G = (V, E, weight)$ with positive real-valued weights, together with a designated source node $s \in V$. The digraph will be presented in adjacency list format. The output should be a list of all the vertices in the graph, in order of the lengths of their shortest paths. For each vertex u, you should include in your output list both the final distance estimate $d[u]$ and the final parent decision $\pi[u]$. Specifically, you should write a function that takes as input the number of nodes n, a dictionary of edges mapping every vertex u to a list of tuples $(v, weight)$, representing an edge from u to v with weight $weight$, and a source node s. The nodes will be represented by the integers from 0 to $n - 1$, inclusive. The function should output a list of tuples in the form $(v, d[v], u)$, where v is a node that can be reached from s, $d[v]$ is the length of the shortest path from s to v, and u is the predecessor of v in that shortest path. This list should be sorted by $d[v]$ values, so the first element will always be $(s, 0, None)$.

The test cases will all be digraphs that represent (directed) road and street segments in a metropolitan area, where the costs represent the time required to traverse the segment by car. We do not guarantee that the costs are geometric, i.e. the costs need not satisfy the triangle inequality.

Solution: These functions should be straightforward implementations of the algorithms presented in class, so we will not describe the solutions in detail. Consult the class notes for details about Dijkstra’s algorithm, or CLRS Section 24.3.

(b) [5 points] SPSP Algorithm 1 Implement an algorithm that solves the Single-Pair Shortest Path problem by making small modifications to your Dijkstra implementation from Part (a). Now the input should be a weighted directed graph together with
Problem Set 5

designated source node s and designated target node t. The output should be a list of the vertices in a shortest path from s to t, in order. Try to design your algorithm so that, if t is close to s, the time cost is correspondingly small. For example, if t is only one short edge away from s, then the algorithm should terminate quickly rather than loop through the entire graph.

Solution: Modify your previous solution so that the function returns immediately if the target node is popped from the queue. You then need to compile the list of edges on shortest paths into a single path from s to t, which can be done by walking backwards from t.

(c) [12 points] **SPSP Algorithm 2: Bidirectional Search** Implement another algorithm that solves the Single-Pair Shortest Path problem, with the same inputs and outputs as in part (b). This time, use bidirectional search from s and t, keeping the distances balanced. That is, in searching from both s and t, always choose a node u with the smallest $d[u]$ value among the nodes in both queues.

Solution: This is a implementation of the bidirectional search described in class. Consult the class notes for details about bidirectional search.

(d) [12 points] **SPSP Algorithm 3: A* Search** Implement yet another algorithm that solves the Single-Pair Shortest Path problem, this time using A* search. Now we assume that each vertex of the graph has an associated location in 2-dimensional Euclidean space. We define the weight of each edge to be its ordinary Euclidean length. (That can be considered a special case of the “traversal time” measure used in parts (a)-(c), if we consider time to be proportional to length.)

For the potential function λ used in your A* search, use simply the Euclidean distance to the target t. Note that, with this potential function, the modified weights are guaranteed to be nonnegative, by the Triangle Inequality. That is, this potential function is feasible.

Specifically, write a function that takes as input a length n list of locations (x, y), a dictionary of edges mapping a node u to a list of nodes v (with no weights!), a source node s, and a target node t. We still use the integers from 0 to $n - 1$ to represent the nodes, but now each node corresponds to an index in the list of locations. Note that we do not include the edge weights in the edge dictionary this time, since the edge weights are determined by the Euclidean distances between the node locations.

Solution: This is an implementation of the A* search described in class. Consult the class notes for details about A* search.

Briefly, you should construct a weight for each edge from the locations. Specifically, the weight for the edge (u, v) should be $\text{distance}(u, v) + \lambda(v) - \lambda(u)$. This takes into account both the distance between the nodes and the difference in potential function. After you construct these edges, you can run Dijkstra’s algorithm as implemented in part (b).

(e) [6 points] **Counting Nodes** In parts (b)-(d), you implemented three Single-Pair Short-
Problem Set 5

11

You will compare their performance, in terms of the numbers of priority queue operations they perform.

Specifically, use PriorityQueue.num_actions, which counts the number of times you call PriorityQueue.add or PriorityQueue.pop for a given priority queue. Augment each of your implementations from parts (b), (c), and (d) to print the needed counts. For parts (b) and (d), this is just the value of PriorityQueue.num_actions for the single queue, but for the bidirectional search in part (c), it is the sum of the values of PriorityQueue.num_actions for both queues.

Run the tests on cases 26, 27, and 28. These test cases run Dijkstra, bidirectional search, and A* search, respectively, on a 100x100 grid where the source is in the center and the target is in a corner. Report the number of actions that were used for each case and explain briefly why these numbers differ from each other.

Make sure to delete your print statements before submitting your code!!

Solution: As expected, A* performs by far the smallest amount of actions because it uses the heuristic to bias the search towards nodes that are closer to the target. Bidirectional search is the next best search, since the search from the target can only expand away from the corner, which is generally the right direction. Dijkstra is the worst search in this case, since the search from the source naively searches in all directions.