QUIZ 1 Information Sheet - on Stellar site

\[\text{To satisfy AVL invariant} \]

Last time: "Balanced" trees (AVL) give \(\Theta(\log n) \) height and operations, and \(\Theta(n \log n) \) sorting.

Can we improve on \(\Theta(n \log n) \)?

Today:

- \(\Theta(n \log n) \) is best possible for comparison sort
- Non-comparison can be \(\Theta(n) \)

Our sorting algorithms use comparisons between items (explicitly or implicitly) → merge sort, heap sort, AVL sort → \(\Theta(n \log n) \)
Abstract comparison sort to Decision Tree

Each pairwise comparison takes place at a node; branch left or right based on outcome of comparison.

sort three items a, b, c

example:
$(a, b, c) = (9, 4, 6)$

$6 = 3!$ leaves of tree give all possible permutations of the input array and correspond to all possible outcomes.

The length of the path taken is the # of comparisons and proportional to running time of algorithm.

worst-case running time $\propto L$ height of tree
Lower Bound for Decision-Tree Sorting

Theorem: Comparison-based sorting requires \(\Omega (n \log n) \) comparisons worst case.

Proof:
- \(\# \text{leaves} \geq n! \) (\# of permutations + possible outputs)
- binary tree with height \(h \) has \(\# \text{leaves} \leq 2^h \)
- \(2^h \geq n! \)
- \(h \geq \log_2 (n!) \) (\(\log \) is monotonically increasing)
- \(h \geq \log_2 ((\frac{n}{e})^n) \) (Sterling's)
- \(= n \log_2 n - n \log_2 e \)
- \(= \Omega (n \log n) \)

So, comparison-based sort can't be better than \(n \log n \)!! [But I can sort subsets of a deck of playing cards in \(O(n) \) time.]

There is no inconsistency—a linear sort isn't carried out through comparisons. More like each object "goes to pre-assigned place."

We will formalize this today and in recitation:
- Counting Sort
- Radix Sort
Counting Sort

Input: \(A[1..n] \), with \(A[i] \in \{0, 1, ..., k\} \)

Output: \(B[1..n] \)

Storage: \(C[0..k] \)

sort from "limited set"

sorted permutation of \(A \)

Intuition

A: 4 1 3 4 3

B: 1 3 3 4 4

\[\begin{array}{c|cccc} 0 & 1 & 2 & 3 & 4 \\ \hline \text{C:} & 0 & 1 & 0 & +2 & +2 \end{array} \]

\(\rightarrow \) linear time
\(\rightarrow \) no comparisons made

Improvements

- Need to copy elements from \(A \) into \(B \) so can copy auxiliary data
- Advantageous to add stable sorting, which preserves input order for equal elements
for $i \leftarrow 0$ to k
 \[C[i] \leftarrow 0 \]
} \{ Initialize array C to zero \}

for $j \leftarrow 1$ to n

\[C[A[j]] \leftarrow C[A[j]] + 1 \]
} \{ Count # of each type of element in A. Store in C. \}

for $i \leftarrow 1$ to k

\[C[i] \leftarrow C[i] + C[i-1] \]
} \{ Make C cumulative, so $C[i]$ contains # of elements $\leq i$ (in sorted order) \}

for $j \leftarrow n$ down to 1

\[B[C[A[j]]] \leftarrow A[j] \]
[\[C[A[j]] \leftarrow C[A[j]] - 1 \] \} \{ Copy input to proper place in output \}

\[\frac{1}{n-k} \]
\[2 \]
\[3 \]
\[4 \]
\[5 \]
A:
\[4 \]
\[1 \]
\[3 \]
\[4 \]
\[3 \]
C:
\[0 \]
\[1 \]
\[0 \]
\[2 \]
\[2 \]
\[\text{"cumulative" counts} \]

Read backwards from end of A, copying each element into proper place in B

\[B: \]
\[3 \]
\[\text{update } C[3] \]
\[\text{(so next } \frac{1}{3} \text{ will go to } B[2]) \]

\[\# \text{ iterate.} \]

- Achieves copy of elements (auxiliary data)
- STABLE sort (equal elements preserve input order)

Running Time Analysis

\[T(n,k) = \Theta(n+k) \]. If $k = O(n)$, then counting sort is $\Theta(n)$ time.
Radix Sort

Imagine want to sort d-digit number by sequentially sorting digits.

Wrong way: Sort digits most significant to least

Right way: Sort digits least significant to most!!

- Produces correct sorted order
- It is important that a stable sort is used.
Radix-Sort \((A, d)\)

\[
\text{for } i \leftarrow 1 \text{ to } d
\]

use a stable sort to sort array \(A\) on digit \(i\)

where \(i = 1\) is least significant and \(n\) is most significant

Running time: If stable sort is \(\Theta(n+k)\), then Radix-Sort is \(\Theta(d(n+k))\)

Can choose to group digits in pairs, triples, etc. and sort on these rather than individual digits.

In general, sort \(n = \) computer words of \(b\) bits each

- Each word can be viewed as having \(d = \left\lceil \frac{\log \frac{b}{r}}{\log 2} \right\rceil\) digits of \(\leq b\) bits each

Example: 32-bit word \([8, 8, 8, 8, 8]\)

- Break each \(b\)-bit word into \(d\) \(r\)-bit pieces and each pass takes \(\Theta(n+2^r)\) time, so \(d\) passes is \(\Theta(d(n+2^r)) = \Theta\left(\frac{b}{r} \log n \right)\)

- Letting \(r = \log \frac{n}{\log n}\)