1. **Equivalence of Search and Decision.** Given an \(\text{NP} \) language \(L \), let a **witness-finder** for \(L \) be a polynomial-time algorithm \(M \) that actually outputs a yes-witness \(y \) for \(x \) whenever \(x \in L \), but could behave arbitrarily if \(x \notin L \). (In other words, if \(V(x,y) \) is the verifier for \(L \), then \(V(x,M(x)) \) accepts whenever \(x \in L \).

(a) Show that if every \(\text{NP} \) language has a witness-finder, then \(\text{P} = \text{NP} \).

(b) Show that if \(\text{P} = \text{NP} \), then every \(\text{NP} \) language has a witness-finder.

2. Let \(\text{EXACT4SAT} \) be the following problem:

- Given a Boolean formula \(\varphi \), consisting of an AND of clauses involving exactly 4 distinct literals each (such as \((x_2 \lor \neg x_3 \lor \neg x_5 \lor x_6) \)), decide whether \(\varphi \) is satisfiable.

Show that \(\text{EXACT4SAT} \) is \(\text{NP} \)-complete. You can use the fact, which we proved in class, that \(\text{3SAT} \) is \(\text{NP} \)-complete.

3. Let \(\text{DOUBLESAT} \) be the following problem:

- Given as input a Boolean circuit \(C \), decide whether there are two or more input assignments \(x \in \{0,1\}^n \) such that \(C(x) = 1 \).

Show that \(\text{DOUBLESAT} \) is \(\text{NP} \)-complete.

4. Let \(G \) be an undirected graph with \(n \) vertices. Then a **Hamilton path** is a simple path in \(G \) that visits each vertex once (i.e., has \(n \) vertices and \(n - 1 \) edges), while a **Hamilton cycle** is a simple cycle in \(G \) that visits each vertex once (i.e., has \(n \) vertices and \(n \) edges). Let \(\text{HAMPATH} \) and \(\text{HAMCYCLE} \) be the problems of deciding whether \(G \) has a Hamilton path and Hamilton cycle respectively, given \(G \) as input.

(a) Show that if \(G \) has a Hamilton cycle, then \(G \) also has a Hamilton path.

(b) Give an example of a graph \(G \) that has a Hamilton path but no Hamilton cycle.

(c) Give a polynomial-time reduction from \(\text{HAMCYCLE} \) to \(\text{HAMPATH} \).

(d) Give a polynomial-time reduction from \(\text{HAMPATH} \) to \(\text{HAMCYCLE} \).

(Together, parts c and d imply that \(\text{HAMPATH} \) and \(\text{HAMCYCLE} \) are polynomial-time equivalent. Since \(\text{HAMCYCLE} \) is a famous \(\text{NP} \)-complete problem, this immediately implies that \(\text{HAMPATH} \) is \(\text{NP} \)-complete as well.)

5. In the **quadratic programming** (\(\text{QUADPROG} \)) problem, the input is a system of equalities and inequalities, each involving polynomials of degree at most 2 (with integer coefficients) in \(n \) real variables \(x_1, \ldots, x_n \). The “size” of the input can be taken to be \(n + m \), where \(n \) is the number of variables, and \(m \) is the number of bits needed to write down the constraints. The problem is to decide whether there
exists an assignment to x_1, \ldots, x_n that satisfies all the constraints simultaneously. As an example, the system

$$x_1 + x_2 \leq 1$$
$$x_1 \geq 0$$
$$x_2 \geq 0$$
$$4x_1x_2 \geq 1$$

can be satisfied by setting $x_1 = x_2 = 1/2$, but if we replaced the last inequality by $x_1x_2 \geq 1$, then the system would be unsatisfiable.

(a) Show that QUADPROG is NP-hard, by reduction from any problem that was already proved NP-hard in class. [Hint: 3COLORING would be a good choice.]

(b) What is a difficulty in showing that QUADPROG \in NP (the other condition needed for QUADPROG to be NP-complete)?

6. Suppose problem X is proved NP-complete, by a polynomial-time mapping reduction that maps size-n instances of SAT to size-n^3 instances of problem X. And suppose that someday, some genius manages to prove that SAT requires $\Omega(c^n)$ time, for some constant $c > 1$. Then what can you conclude about the time complexity of problem X?

7. Recall that SUBSET SUM is the following problem: given as input positive integers x_1, \ldots, x_n, k encoded in binary, decide whether there exists a subset $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} x_i = k$. In class, we asserted without proof that SUBSET SUM is NP-complete. Now let UNARY SUBSET SUM be the same problem, except that x_1, \ldots, x_n, k are encoded in unary notation, so that the “input length” is $x_1 + \cdots + x_n + k$ instead of $\log x_1 + \cdots + \log x_n + \log k$. Show that UNARY SUBSET SUM \in P, by describing a polynomial-time algorithm to solve it.

8. The Polynomial Hierarchy. Let $L = \{ \langle C \rangle : \text{there is a smaller circuit that computes the same Boolean function as } C \}$, where C is a circuit (say of NAND gates), and $\langle C \rangle$ is its description. Show that $L \in \text{NP}^{\text{NP}}$.

2