
Costis Daskalakis
Aleksander Mądry
what, when, how do deep NNs learn?
e.g. Classification

• Basic learning task: design function $h: \mathcal{X} \to \mathcal{C}$, mapping objects from some set \mathcal{X} to their class label in \mathcal{C}

• e.g. \mathcal{X}: images of cats and dogs, $\mathcal{C} = \{0, 1\}$

• How to do this?
 1. identify “expressive enough” family of functions \mathcal{H}
 2. use examples to choose some “good” $h \in \mathcal{H}$
e.g. Classification

• Basic learning task: design function \(h: \mathcal{X} \rightarrow \mathcal{C} \), mapping objects from some set \(\mathcal{X} \) to their class label in \(\mathcal{C} \)

• e.g. \(\mathcal{X} \): images of cats and dogs, \(\mathcal{C} = \{0,1\} \)

• How to do this?
 1. identify “expressive enough” family of functions \(\mathcal{H} \)
 • e.g. \(\mathcal{H} \) all convolutional nets of certain width and depth
 2. use examples to choose some “good” \(h \in \mathcal{H} \)
 • each example is a pair \((x, y)\) of an image and its label
 • output empirical risk minimizer:
 \[
 \hat{h} \in \arg\max_{h \in \mathcal{H}} \sum_{\text{examples } (x_i,y_i)} 1_{h(x_i)=y_i}
 \]
e.g. Classification

- identify “expressive enough” family of functions \mathcal{H}
 - e.g. \mathcal{H} all convolutional nets of certain width and depth
- use examples to choose some “good” $h \in \mathcal{H}$
 - output empirical risk minimizer $\hat{h} \in \operatorname{argmax}_{h \in \mathcal{H}} \sum_{(x_i, y_i) \in \mathcal{E}} 1_{h(x_i) = y_i}$
- hope: $\mathbb{E}_{(X,Y) \sim F} \left[1_{\hat{h}(X) = Y} \right] \geq \max_{h \in \mathcal{H}} \mathbb{E}_{(X,Y) \sim F} \left[1_{h(X) = Y} \right] - \epsilon$ (*)
 - F: true distribution of (image, class label) pairs to be encountered in the future
 - presumably training set of examples were drawn from F
- Two questions:
 1. How close is $\max_{h \in \mathcal{H}} \mathbb{E}_{(X,Y) \sim F} \left[1_{h(X) = Y} \right]$ to $\max_{h: \text{unrestricted}} \mathbb{E}_{(X,Y) \sim F} \left[1_{h(X) = Y} \right]$?
 2. How fast does ϵ in (*) decay in the number of examples N?

- Rich \mathcal{H} ⇒ 1 good, 2 bad
- Poor \mathcal{H} ⇒ 1 bad, 2 maybe good
- For 1, use a rich enough family \mathcal{H}
- For 2, bound the “dimensionality” of \mathcal{H}, get “generalization bounds”

These imply small ϵ in (*)
Generalization Bounds

• Skip what a “generalization bound” is for a moment
 • central topic in ML theory
 • **Today:** Vapnik–Chervonenkis (VC) theory of generalization

• Consider a class of Boolean functions \(\mathcal{H} = \{h: \mathcal{X} \to \{0,1\}\} \)

• **Def:** VC dimension of \(\mathcal{H} = \max \) #points \(\mathcal{H} \) can **shatter**
 • points \(x_1, \ldots, x_k \in \mathcal{X} \) are shattered by \(\mathcal{H} \) iff \(\forall \) 0/1 patterns \(\sigma \in \{0,1\}^k \) \(\exists \) a function \(h \in \mathcal{H} \) whose values on the points \(x_1, \ldots, x_k \) equal \(\sigma \), i.e. \(h(x_i) = \sigma_i, \forall i \)
 • e.g. say \(\mathcal{H} = \{\text{halfplanes in } \mathbb{R}^2\} \)
 • \(\text{VC}(\mathcal{H}) = 3 \)
Generalization Bounds

• Skip what a "generalization bound" is for a moment
 • central topic in ML theory
 • Here: Vapnik–Chervonenkis (VC) theory of generalization

• Consider a class of Boolean functions $\mathcal{H} = \{ h: \mathcal{X} \rightarrow \{0,1\} \}$

• Def: VC dimension of \mathcal{H} = max #points \mathcal{H} can shatter
 • points $x_1, \ldots, x_k \in \mathcal{X}$ are shattered by \mathcal{H} iff \forall 0/1 patterns $\sigma \in \{0,1\}^k \exists$ a function $h \in \mathcal{H}$ whose values on the points x_1, \ldots, x_k equal σ, i.e. $h(x_i) = \sigma_i$, $\forall i$
 • e.g. say $\mathcal{H} = \{\text{halfplanes in } \mathbb{R}^2\}$
 • $\text{VC}(\mathcal{H}) = 3$ (proved lower bound in previous slide, upper bound is left an exercise)

• VC Theorem: Suppose \mathcal{H} is a class of Boolean functions w/ VC-dimension d. Then given:
 \[
 N \approx \frac{(d \cdot \ln(1/\epsilon) + \ln(1/\delta))}{\epsilon^2}
 \]
 samples $(X_1, Y_1), \ldots, (X_N, Y_N) \sim F$ we have that, w/ prob $\geq 1 - \delta$,
 \[
 \forall h \in \mathcal{H}: \left| \mathbb{E}_{(X,Y) \sim F}[1_{h(X)=Y}] - \frac{1}{N} \sum_i 1_{h(x_i)=y_i} \right| \leq \epsilon
 \]
Generalization Bounds

• How to prove?
 • Many ways, central topic in ML theory
 • **Here**: Vapnik–Chervonenkis (VC) theory of generalization
 • Similar generalization theorems exist for real-valued functions via Rademacher complexity, pseudo-dimension, ...
 • they also exist for different access to examples
 • It is a well-developed theory

• Disconnect with practical performance of Deep NNs:
 • VC/Rademacher complexity/Pseudo-dimension of Deep NNs too large compared to sample size: is there overfitting?
 • Finding ERM is sort of hopeless; maybe SGD finds local optimum:
 • maybe a good thing?
 • Is there an optimality vs overfitting tradeoff?
 • Is stochasticity in GD also a good thing?
 • Role of optimization method, max pooling, dropout?
 • Training set: attacks because training set non-representative or because of overfitting?
Generative Adversarial Networks

- Algorithms mapping white noise to high-dimensional objects with structure:
 \[z \sim N(0, I_{100 \times 100}) \]
 face GAN

- If you want, what human imagination does (presumably)
- Trained using samples (e.g. faces) from true high-dimensional distribution with structure (e.g. natural face images)
- **Statistical Question**: after GAN has been trained, did it really learn the underlying structured high-dimensional distribution?
- Or did it “memorize” the training set?
A Hypothesis Testing Problem

- Sample access to F: distribution of true faces
- Sample + white-box access to Q: GAN, and its output
- **Goal**: distinguish $d(F, Q) \leq \varepsilon_1$ vs $d(F, Q) \geq \varepsilon_2$
- Really well-studied problem in Statistics, Information Theory, TCS
- Trouble is:
 - what is the right distance d to use?
 - F, Q: high-dimensional (e.g. face image distributions)
 - Statistical tests commonly require exponentially many samples in the dimension, unless one has deeper understanding of structure in both F and Q
 - e.g. even if Q is trivial (product measure), and d is total variation distance, answering above question requires exponentially many samples in the dimension.
- What is the right statistical lens via which to approach this question?
Game Theory
GAN Training

- Think F: true high-dimensional distribution (e.g. faces) in \mathbb{R}^n
- Q: output of a Deep NN G, of certain architecture, with parameters θ
 - i.e. $G_\theta(z)$, where $z \sim N(0, I)$
- Suppose interested in Wasserstein distance:
 $$W(F, Q) = \sup_{D: \mathbb{R}^n \rightarrow \mathbb{R}, 1-\text{Lipschitz}} (\mathbb{E}_{X \sim F}[D(X)] - \mathbb{E}_{X \sim Q}[D(X)])$$
- In a perfect world, G_θ should minimize:
 $$\inf_{\theta} \sup_{D: \mathbb{R}^n \rightarrow \mathbb{R}, 1-\text{Lipschitz}} (\mathbb{E}_{X \sim F}[D(X)] - \mathbb{E}_{Z \sim N(0, I)}[D(G_\theta(Z))])$$
- In practice, hard to compute sup over all Lipschitz functions, so only take sup over all Deep NNs D, of certain architecture, w/ parameters w:
 $$\inf_{\theta} \sup_{w} (\mathbb{E}_{X \sim F}[D_w(X)] - \mathbb{E}_{Z \sim N(0, I)}[D_w(G_\theta(Z))])$$
- In other words, set up a game between a Generator deep NN, and a Discriminator deep NN
GAN Training

• A **game** between a *Generator* deep NN, w/ parameters θ, and a *Discriminator* deep NN, w/ parameters w:

$$\inf_{\theta} \sup_w \mathbb{E}_{X \sim F} [D_w(X)] - \mathbb{E}_{Z \sim N(0,I)} [D_w(G_{\theta}(Z))]$$

• **Training**: generator and discriminator run some variant of gradient descent each to update their parameters θ, w; expectations are approximated by finite sample averages.
GAN Training

• A game between a Generator deep NN, w/ parameters θ and a Discriminator deep NN, w/ parameters w:
 \[
 \inf_{\theta} \sup_{w} \left(\mathbb{E}_{X \sim F} [D_{w}(X)] - \mathbb{E}_{Z \sim N(0,I)} [D_{w}(G_{\theta}(Z))] \right)
 \]

• Training: generator and discriminator run some variant of gradient descent each to update their parameters θ, w; expectations are approximated by finite sample averages (even ignore errors coming from this – assume access to true expectations)

• Will gradient descent converge?

• If yes, to what?
The Min-Max Theorem

- **[von Neumann 1928]:** If \(X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m \) are compact and convex, and \(f: X \times Y \rightarrow \mathbb{R} \) is convex-concave (i.e. \(f(x, y) \) is convex in \(x \) for all \(y \) and is concave in \(y \) for all \(x \)), then

\[
\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)
\]

- Min-max optimal \((x, y)\) is essentially unique (unique if \(f \) is strictly convex-concave, o.w. a convex set of solutions)

- von Neumann: "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved"

- Equivalent to strong LP duality

- **[Blackwell,...]:** A host of uncoupled update-rules (dynamics) applied by the min and the max players “converge” to min-max equilibrium

- *no-regret learning dynamics:* e.g. Multiplicative-weights-update, follow-the-regularized-leader, follow-the-perturbed-leader, etc.

- Follow-the-regularized-leader with \(\ell_2 \)-regularization \(\equiv \) gradient descent
Challenges

• “Convergence” of online learning to min-max solutions for convex-concave functions $f(x, y)$ only happens in an average sense
 • E.g. gradient descent for $f(x, y) = x \cdot y$

![Diagram showing spiral convergence]

• Objective function in Wasserstein GAN training isn’t even convex-concave

• Questions:
 • Stability: how to converge to local saddles?
 • Generalization: Effects of approximation of expectation with sample averages?
Game Playing
Deep Mind

• Stated Mission: Solve intelligence, use it to make the world a better place.
• ...
• We’ll take a look at the guts of AlphaGo, and AlphaGo Zero
• Connection to Reinforcement Learning, Policy and Value Iteration, and the Min-Max Theorem
Outlook

• Really small sample size: health data
• Robust Statistics
• Causality + Counterfactuals
• Privacy concerns
• Fairness
• Ethical Considerations
• Philosophical ramifications of unreasonable practical success of Deep Learning
6.883 Statement of Purpose:
- to entice the practically-minded into theory as a means to understand and improve practice
- to entice the theoretically-minded into the deep questions motivated by practical experience