Computational Tutorial: An introduction to LSTMs in Tensorflow

Harini Suresh Nick Locascio
Part 1: Neural Networks Overview

Part 2: Sequence Modeling with LSTMs

Part 3: TensorFlow Fundamentals

Part 4: LSTMs + Tensorflow Tutorial
Part 1: Neural Networks Overview
Neural Network

Input layer

hidden layers

output layer

\[\begin{align*}
\text{Input layers:} & \quad x_0, x_1, \ldots, x_n \\
\text{Hidden layers:} & \quad h_0, h_1, h_2, \ldots, h_n \\
\text{Output layer:} & \quad o_0, o_1, \ldots, o_n
\end{align*} \]
The Perceptron

inputs weights sum non-linearity

x_0, x_1, x_2, x_n, 1

w_0, w_1, w_2, w_n

Σ

b

bias
Perceptron Forward Pass

\[\text{output} = \]
Perceptron Forward Pass

\[
output = \sum_{i=0}^{N} x_i \cdot w_i
\]
Perceptron Forward Pass

\[\text{output} = \left(\sum_{i=0}^{N} x_i \cdot w_i \right) + b \]
Perceptron Forward Pass

\[\text{output} = g\left(\sum_{i=0}^{N} x_i \cdot w_i + b \right) \]
Perceptron Forward Pass

\[\text{output} = g(XW + b) \]

\[X = x_0, x_1, \ldots x_n \]

\[W = w_0, w_1, \ldots w_n \]
Perceptron Forward Pass

Activation Function

\[\text{output} = g(XW + b) \]

\[X = x_0, x_1, \ldots x_n \]

\[W = w_0, w_1, \ldots w_n \]
Sigmoid Activation

\[\text{output} = g(XW + b) \]

\[g(a) = \sigma(a) = \frac{1}{1 + e^{-a}} \]
Common Activation Functions

Sigmoid:
\[f(x) = \frac{1}{1 + e^{-x}} \]

TanH:
\[\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \]

ReLU:
\[f(x) = \begin{cases}
0 & \text{for } x < 0 \\
\text{for } x \geq 0
\end{cases} \]
Importance of Activation Functions

- Activation functions add non-linearity to our network’s function
- Most real-world problems + data are non-linear
Perceptron Forward Pass

\[\text{output} = g(XW + b) \]
Perceptron Forward Pass

output = g(

(2*0.1) +
(3*0.5) +
(-1*2.5) +
(5*0.2) +
(1*3.0))
Perceptron Forward Pass

\[\text{output} = g(3.2) = \sigma(3.2) \]

\[= \frac{1}{1 + e^{-3.2}} = 0.96 \]
How do we build neural networks with perceptrons?
Perceptron Diagram Simplified

inputs weights sum non-linearity

\[\sum \]

bias

output
Perceptron Diagram Simplified

inputs

\[x_0\]
\[x_1\]
\[x_2\]
\[x_n\]

output

\[o_0\]
Multi-Output Perceptron

\[x_0, x_1, x_2, \ldots, x_n \rightarrow o_0, o_1 \]
Multi-Layer Perceptron (MLP)
Multi-Layer Perceptron (MLP)
Deep Neural Network
Training Neural Networks
Training Neural Networks: Loss function

\[\text{loss} := J(\theta) = \frac{1}{N} \sum_{i}^{N} \text{loss}(f(x^{(i)}; \theta), y^{(i)}) \]

\begin{itemize}
 \item \(N = \# \text{ examples} \)
 \item Predicted
 \item Actual
\end{itemize}
Training Neural Networks: Objective

\[
\arg\min_{\theta} \frac{1}{N} \sum_{i}^{N} \text{loss}(f(x^{(i)}; \theta), y^{(i)})
\]

\[
J(\theta) \quad \theta = W_1, W_2 \ldots W_n
\]
Loss is a **function** of the model’s parameters.
How to minimize loss?

Start at random point
How to minimize loss?

Compute: \[
\frac{\partial J(\theta)}{\partial \theta}
\]
How to minimize loss?

Move in direction opposite of gradient to new point.
How to minimize loss?

Move in direction opposite of gradient to new point
How to minimize loss?
This is called Stochastic Gradient Descent (SGD)

Repeat!
Stochastic Gradient Descent (SGD)

- Initialize θ randomly
- For N Epochs
 - For each training example (x, y):
 - Compute Loss Gradient: $\frac{\partial J(\theta)}{\partial \theta}$
 - Update θ with update rule:
 $$\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$
Stochastic Gradient Descent (SGD)

- Initialize θ randomly
- For N Epochs
 - For each training example (x, y):
 - Compute Loss Gradient: $\frac{\partial J(\theta)}{\partial \theta}$
 - Update θ with update rule:
 $$\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$
Stochastic Gradient Descent (SGD)

- Initialize θ randomly
- For N Epochs
 - For each training example (x, y):
 - Compute Loss Gradient: $\frac{\partial J(\theta)}{\partial \theta}$
 - Update θ with update rule:
 $$\theta := \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$$

- How to Compute Gradient?
Calculating the Gradient: Backpropagation

\[J(\Theta) \]
Calculating the Gradient: Backpropagation

\[
\frac{\partial J(\theta)}{\partial W_2} =
\]

\[x_0 \xrightarrow{w_1} h_0 \xrightarrow{w_2} o_0 \xrightarrow{} J(\Theta)\]
Calculating the Gradient: Backpropagation

Apply the chain rule

\[\frac{\partial J(\theta)}{\partial W_2} = \]
Calculating the Gradient: Backpropagation

Apply the chain rule

$$\frac{\partial J(\theta)}{\partial W_2} = \frac{\partial J(\theta)}{\partial o_0}$$
Calculating the Gradient: Backpropagation

Apply the chain rule

\[
\frac{\partial J(\theta)}{\partial W_2} = \frac{\partial J(\theta)}{\partial o_0} \cdot \frac{\partial o_0}{\partial W_2}
\]
Calculating the Gradient: Backpropagation

\[
\frac{\partial J(\theta)}{\partial W_1} = \ldots
\]
Calculating the Gradient: Backpropagation

\[J(\Theta) \]

Apply the chain rule

\[\frac{\partial J(\theta)}{\partial W_1} \]
Calculating the Gradient: Backpropagation

Apply the chain rule

$$\frac{\partial J(\theta)}{\partial W_1} = \frac{\partial J(\theta)}{\partial o_0} \times \frac{\partial o_0}{\partial h_0}$$
Calculating the Gradient: Backpropagation

\[\frac{\partial J(\theta)}{\partial W_1} = \frac{\partial J(\theta)}{\partial o_0} \times \frac{\partial o_0}{\partial h_0} \]
Calculating the Gradient: Backpropagation

\[\frac{\partial J(\theta)}{\partial W_1} = \frac{\partial J(\theta)}{\partial o_0} \cdot \frac{\partial o_0}{\partial h_0} \cdot \frac{\partial h_0}{\partial W_1} \]
Core Fundamentals Review

- Perceptron Classifier
- Stacking Perceptrons to form neural networks
- How to formulate problems with neural networks
- Train neural networks with backpropagation
Part 2: Sequence Modeling with Neural Networks

Harini Suresh
What is a sequence?

- “I took the dog for a walk this morning.”
- Sentence
- Function
- Speech waveform
Successes of deep models

Machine translation

Question Answering

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so that the logo could prominently feature the Arabic numerals 50.

Super Bowl 50 decided the NFL champion for what season?
Ground Truth Answers: 2015 the 2015 season 2015
Prediction: 2015

Left:
Right:
https://rajpurkar.github.io/SQuAD-explorer/
how do we model sequences?
idea: represent a sequence as a *bag of words*

"I dislike rain."

[0 1 0 1 0 0 0 1]

prediction
problem: bag of words does not preserve order
problem: bag of words does not preserve order

“The food was good, not bad at all.”

vs

“The food was bad, not good at all.”
idea: maintain an ordering within feature vector

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

On Monday it was snowing

One hot feature vector indicates what each word is prediction
problem: hard to deal with different word orders

“On Monday, it was snowing.”

vs

“It was snowing on Monday.”
problem: hard to deal with different word orders

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

On Monday it was snowing

vs

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

It was snowing on Monday
problem: hard to deal with different word orders

“On Monday it was snowing.”

vs

“It was snowing on Monday.”

We would have to **relearn the rules of language** at each point in the sentence.
idea: markov models
Problem: we can’t model long-term dependencies

Markov assumption: each state depends only on the last state.
problem: we can’t model long-term dependencies

“In France, I had a great time and I learnt some of the ____ language.”

We need information from the far past and future to accurately guess the correct word.
let’s turn to **recurrent neural networks**! (RNNs)

1. to maintain **word order**
2. to **share parameters** across the sequence
3. to keep track of **long-term dependencies**
example network:
example network:

let's take a look at this one hidden unit
RNNS remember their previous state:

\[x_0 : \text{vector representing first word} \]
\[s_0 : \text{cell state at } t = 0 \text{ (some initialization)} \]
\[s_1 : \text{cell state at } t = 1 \]
\[s_1 = \tanh(W x_0 + U s_0) \]

\(x_0 \): "it"
\(W, U \): weight matrices
RNNS remember their previous state:

x_1: "was"

x_1: vector representing second word
s_1: cell state at $t = 1$
s_2: cell state at $t = 2$

$s_2 = \tanh(Wx_1 + Us_1)$

W, U: weight matrices
“unfolding” the RNN across time:
“unfolding” the RNN across time:

\[x_0 W s_0 U x_1 W s_1 U x_2 W s_2 U \ldots \]

notice that W and U stay the same!
“unfolding” the RNN across time:

\[
\begin{align*}
W & \rightarrow x_0 \\
U & \rightarrow s_0 \\
W & \rightarrow s_1 \\
U & \rightarrow x_1 \\
W & \rightarrow s_2 \\
U & \rightarrow x_2 \\
\end{align*}
\]

\(s_n\) can contain information from all past timesteps.
all the works of shakespeare

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
possible task: language model

\[y_0 \quad \text{ alas} \]
\[y_1 \quad \text{ my} \]
\[y_2 \quad \text{ honor} \]

\[y_i \] is actually a probability distribution over possible next words, aka a softmax.
37:29 The righteous shall inherit the land, and leave it for an inheritance unto the children of Gad according to the number of steps that is linear in b.

hath it not been for the singular taste of old Unix, “new Unix” would not exist.

http://kingjamesprogramming.tumblr.com/
Possible task: classification (i.e., sentiment)

Don't fly with @British_Airways. They can't keep track of your luggage.

Happy Birthday to my best friend, the heart of my life, my soul!!!! I love you beyond words! [Link to Instagram post](https://instagram.com/p/aTgfI-OS-a/)
possible task: classification (i.e. sentiment)

y is a probability distribution over possible classes (like positive, negative, neutral), aka a softmax.
possible task: machine translation

\[\text{the} \rightarrow W \rightarrow \text{dog} \rightarrow W \rightarrow \text{eats} \rightarrow W \rightarrow \ldots \]

\[\text{le} \rightarrow K \rightarrow \text{chien} \rightarrow K \rightarrow \text{mange} \rightarrow K \rightarrow \text{<end>} \rightarrow K \rightarrow \ldots \]
how do we **train** an RNN?
how do we train an RNN?

backpropagation!

(through time)
remember: **backpropagation**

1. **take the derivative** (gradient) of the loss with respect to each parameter

2. **shift parameters in the opposite direction** in order to minimize loss
we have a **loss at each timestep:**

(since we’re making a prediction at each timestep)
we have a loss at each timestep:
(since we’re making a prediction at each timestep)
we sum the losses across time:

loss at time $t = J_t(\Theta)$

total loss $= J(\Theta) = \sum_t J_t(\Theta)$

$\Theta = \text{our parameters, like weights}$
what are our gradients?

we sum gradients across time for each parameter P:

$$\frac{\partial J}{\partial P} = \sum_t \frac{\partial J_t}{\partial P}$$
let’s try it out for W with the **chain rule**:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$
let’s try it out for W with the chain rule:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$

so let’s take a single timestep t:

```
let’s try it out for $W$ with the chain rule:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$

so let’s take a single timestep $t$: 

$$\frac{\partial J_2}{\partial W}$$
let’s try it out for $W$ with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep $t$:

\[
\frac{\partial J_t}{\partial W} = \frac{\partial J_t}{\partial y_t}
\]
let’s try it out for $W$ with the **chain rule**:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$

so let’s take a single timestep $t$:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2}$$
let’s try it out for $W$ with the **chain rule**:

$$
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
$$

so let’s take a single timestep $t$:

$$
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
$$
let’s try it out for $W$ with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep $t$:

\[
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
\]

but wait...
let’s try it out for $W$ with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep $t$:

\[
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
\]

but wait…

\[
s_2 = \tanh(Us_1 + Wx_2)
\]
let’s try it out for $W$ with the **chain rule**:

$$
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
$$

so let’s take a single timestep $t$:

$$
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
$$

but wait...

$$
s_2 = \tanh(Us_1 + Wx_2)
$$

$s_1$ also depends on $W$ so we can’t just treat $\frac{\partial s_2}{\partial W}$ as a constant!
how does $s_2$ depend on $W$?
how does $s_2$ depend on $W$?

\[ \frac{\partial s_2}{\partial W} \]
how does $s_2$ depend on $W$?

\[
\frac{\partial s_2}{\partial W} + \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W}
\]
how does $s_2$ depend on $W$?

\[
\begin{align*}
\frac{\partial s_2}{\partial W} &+ \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W} \\
&+ \frac{\partial s_2}{\partial s_0} \frac{\partial s_0}{\partial W}
\end{align*}
\]
backpropagation through time:

$$\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Contributions of $W$ in previous timesteps to the error at timestep $t$
backpropagation through time:

\[
\frac{\partial J_t}{\partial W} = \sum_{k=0}^{t} \frac{\partial J_t}{\partial y_t} \frac{\partial y_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

Contributions of $W$ in previous timesteps to the error at timestep $t$
why are RNNs hard to train?
**Problem:** vanishing gradient

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]
problem: vanishing gradient

$$\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}$$
problem: vanishing gradient

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

at \( k = 0 \):

\[
\frac{\partial s_2}{\partial s_0} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial s_0}
\]
problem: vanishing gradient

\[
\frac{\partial J_n}{\partial W} = \sum_{k=0}^{n} \frac{\partial J_n}{\partial y_n} \frac{\partial y_n}{\partial s_n} \frac{\partial s_n}{\partial s_k} \frac{\partial s_k}{\partial W}
\]
**problem:** vanishing gradient

\[
\frac{\partial J_n}{\partial W} = \sum_{k=0}^{n} \frac{\partial J_n}{\partial y_n} \frac{\partial y_n}{\partial s_n} \frac{\partial s_n}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

as the gap between timesteps gets bigger, this product gets longer and longer!
**Problem:** vanishing gradient

\[
\frac{\partial s_n}{\partial s_{n-1}} \frac{\partial s_{n-1}}{\partial s_{n-2}} \cdots \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial s_0}
\]
**problem:** vanishing gradient

what are each of these terms?
problem: vanishing gradient

what are each of these terms?

\[
\frac{\partial s_n}{\partial s_{n-1}} = W^T \text{diag}[f'(W_{s_{j-1}} + Ux_j)]
\]

W = sampled from standard normal distribution = mostly < 1

f = tanh or sigmoid so f' < 1
**problem:** vanishing gradient

what are each of these terms?

\[ \frac{\partial s_n}{\partial s_{n-1}} = W^T \text{diag}[f'(W_{s_{j-1}} + Ux_j)] \]

\( W = \) sampled from standard normal distribution = mostly < 1

\( f = \) tanh or sigmoid so \( f' < 1 \)

we're multiplying a lot of **small numbers** together.
we’re multiplying a lot of **small numbers** together.

**so what?**

errors due to further back timesteps have increasingly smaller gradients.

**so what?**

parameters become biased to **capture shorter-term dependencies.**
“In France, I had a great time and I learnt some of the _____ language.”

our parameters are not trained to capture long-term dependencies, so the word we predict will mostly depend on the previous few words, not much earlier ones.
solution #1: activation functions

ReLU derivative
prevents $f'$ from shrinking the gradients

sigmoid derivative

tanh derivative
solution #2: initialization

weights initialized to identity matrix
biases initialized to zeros

\[ I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \]

prevents \( W \) from shrinking the gradients
solution #3: **gated cells**

rather each node being just a simple RNN cell, make each node a more **complex unit with gates** controlling what information is passed through.
solution #3: more on LSTMs
solution #3: more on LSTMs

\[ S_j \rightarrow S_{j+1} \]

- forget irrelevant parts of previous state
solution #3: more on **LSTMs**

- \( s_j \) selects to update cell state values
- \( s_{j+1} \)
solution #3: more on **LSTMs**

\[ S_j \rightarrow S_{j+1} \]

output certain parts of cell state
solution #3: more on LSTMs

$s_j$  

- forget irrelevant parts of previous state
- selectively update cell state values
- output certain parts of cell state

$s_{j+1}$
why do LSTMs help?

1. forget gate allows information to pass through unchanged
   → when taking the derivative, \( f' \) is 1 for what we want to keep!

2. \( s_j \) depends on \( s_{j-1} \) through addition!
   → when taking the derivative, not lots of small \( W \) terms!
in practice: machine translation.
basic encoder-decoder model:
add LSTM cells:
**problem:** a fixed-length encoding is limiting

all the decoder knows about the input sentence is in one fixed length vector, $s_2$
solution: attend over all encoder states
solution: attend over all encoder states
solution: attend over all encoder states
now we can model **sequences**!

- why recurrent neural networks?
- building models for language, classification, and machine translation
- training them with backpropagation through time
- solving the vanishing gradient problem with activation functions, initialization, and gated cells (like LSTMs)
- using attention mechanisms
and there’s lots more to do!

- extending our models to timeseries + waveforms
- complex language models to generate long text or books
- language models to generate code
- controlling cars + robots
- predicting stock market trends
- summarizing books + articles
- handwriting generation
- multilingual translation models
- … many more!
Using TensorFlow
Deep Learning Frameworks

- GPU Acceleration
- Automatic Differentiation
- Code Reusability + Extensibility
- Speed up Idea -> Implementation
Whats out there?
What is a Tensor?

- Tensorflow Tensors are very similar to numpy ndarrays

<table>
<thead>
<tr>
<th>Numpy</th>
<th>TensorFlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = np.zeros((2,2)); b = np.ones((2,2))</td>
<td>a = tf.zeros((2,2)), b = tf.ones((2,2))</td>
</tr>
<tr>
<td>np.sum(b, axis=1)</td>
<td>tf.reduce_sum(a, reduction_indices=[1])</td>
</tr>
<tr>
<td>a.shape</td>
<td>a.get_shape()</td>
</tr>
<tr>
<td>np.reshape(a, (1,4))</td>
<td>tf.reshape(a, (1,4))</td>
</tr>
<tr>
<td>b * 5 + 1</td>
<td>b * 5 + 1</td>
</tr>
<tr>
<td>np.dot(a,b)</td>
<td>tf.matmul(a, b)</td>
</tr>
<tr>
<td>a[0,0], a[:,0], a[0,:]</td>
<td>a[0,0], a[:,0], a[0,:]</td>
</tr>
</tbody>
</table>
TensorFlow Basics

- Create a session
- Define a computation Graph
- Feed your data in, get results out
Sessions

- Encapsulates environment to run graph
- How to create the session

```python
import tensorflow as tf
session = tf.InteractiveSession()
or
session = tf.Session()
```
What is a graph

- Encapsulates the computation you want to perform

```
\[
\begin{align*}
 c &= a + b \\
 d &= b - 1 \\
 e &= c \times d
\end{align*}
\]
```
What are graphs made of?

- **Placeholders (aka Graph Inputs)**

  a = tf.placeholder(tf.float32)
  b = tf.placeholder(tf.float32)
What are graphs made of?

- Constants

```python
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
k = tf.constant(1.0)
```
What are graphs made of?

- Operations

\[
\begin{align*}
a &= \text{tf.placeholder}(\text{tf.float32}) \\
b &= \text{tf.placeholder}(\text{tf.float32}) \\
k &= \text{tf.constant}(1.0) \\
c &= \text{tf.add}(a, b) \\
d &= \text{tf.subtract}(b, k) \\
e &= \text{tf.multiply}(c, d)
\end{align*}
\]
How do we run the graph?

- Select nodes to evaluate
- Specify values for placeholders

```python
session.run(e, feed_dict={a:2.0, b:0.5})
>>> -1.25

session.run(c, feed_dict={a:2.0, b:0.5})
>>> 2.5

session.run([e,c], feed_dict={a:2.0, b:0.5})
>>> [2.5, -1.25]
```
Building a Neural Network Graph

- The previous graph performed a constant computation
- Network weights need to be mutable
- Enter: `tf.Variable`
tf.Variable: Initialization

- Can initialize to specific values
  
  \[
  b1 = \text{tf.Variable(tf.zeros((2,2)), name="bias")}
  \]

- Can initialize to random values
  
  \[
  w1 = \text{tf.Variable(tf.random_normal((2,2)), name="w1")}
  \]
Building a Neural Network Graph

\[ n_{\text{input\_nodes}} = 2 \]
\[ n_{\text{output\_nodes}} = 1 \]
\[ x = \text{tf.placeholder}(\text{tf.float32}, (\text{None}, 2)) \]
\[ y = \text{tf.placeholder}(\text{tf.float32}, (\text{None}, 1)) \]
\[ W = \text{tf.Variable}(\text{tf.random\_normal}((n_{\text{input\_nodes}}, n_{\text{output\_nodes}}))) \]
\[ b = \text{tf.Variable}(\text{tf.zeros}(n_{\text{output\_nodes}})) \]
\[ z = \text{tf.matmul}(x, W) + b \]
\[ \text{out} = \text{tf.sigmoid}(z) \]
Adding a loss function

\[
n_{\text{input nodes}} = 2 \\
n_{\text{output nodes}} = 1 \\
x = \text{tf.placeholder}(\text{tf.float32}, (\text{None}, 2)) \\
W = \text{tf.Variable}(\text{tf.random_normal}((n_{\text{input nodes}}, n_{\text{output nodes}}))) \\
b = \text{tf.Variable}(\text{tf.zeros}(n_{\text{output nodes}})) \\
z = \text{tf.matmul}(x, W) + b \\
\text{out} = \text{tf.sigmoid}(z) \\
\text{loss} = \text{tf.reduce_mean}(
  \text{tf.nn.sigmoid_cross_entropy_with_logits}(
    \text{logits}=z, \text{labels}=y))
\]
Add an optimizer: SGD

```python
learning_rate = 0.02
loss = tf.reduce_mean(
 tf.nn.sigmoid_cross_entropy_with_logits(
 logits=output, labels=y))

optimizer = tf.train.GradientDescentOptimizer(
 learning_rate).minimize(loss)

sess.run(optimizer, feed_dict={x: inputs, y:labels})
```
Run the graph

- Feed in training data in batches
- Each run of the graph updates the variables
  - SGD applies an op to all variables
- Feed in dev/test data to evaluate
  - Do not fetch the train op
Useful Features of TensorFlow
TensorBoard: Model Visualization
TensorBoard: Logging
How to use TensorBoard

- Write to Tensorboard using **Summary Logs**

Open your TensorBoard with the terminal command:

```
tensorboard --logdir=path/to/log-directory
```
Summary Logs

- Summaries are operations! So just part of the graph:
  
  ```python
 loss_summary = tf.summary.scalar('loss', loss)
  ```

- Summary writers save summaries to a log file
  
  ```python
 summary_writer = tf.summary.FileWriter('logs/', session.graph)
  ```

- Summaries are operations - so just run them!
  
  ```python
 pred, summary = sess.run([out, loss_summary], feed_dict={
 x: inputs, labels_placeholder:labels})
 summary_writer.add_summary(summary, global_step)
  ```
Summary Logs
Name Scoping

with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.Variable("v", [1])

v.name

>>> "foo/bar/v:0"
Sharing weights tf.get_variable()

```python
with tf.variable_scope("foo"):
 with tf.variable_scope("bar"):
 v = tf.get_variable("v", [1])

v.name

```

>>> "foo/bar/v:0"
Why share weights?

- Imagine we want to learn a feature detector that we run over multiple inputs, and aggregate features and produce a prediction, all in 1 graph
- Need to share the weights to ensure:
  - A shared, single representation is learned
  - Gradients get propagated for all inputs
def cnn_feature_extractor(image):
    ...
    with tf.variable_scope("feature_extractor"):  
        v = tf.Variable("v", [1])
    ...
    features = tf.relu(h4)
    return features

feat_1 = cnn_feature_extractor(image_1)
feat_2 = cnn_feature_extractor(image_2)
pred = predict(feat_1, feat_2)
Name Scoping for cleaner code

- Networks often re-use similar structures, gets tedious to write each of them

```python
def make_layer(input, input_size, output_size, scope_name):
 with tf.variable_scope(scope_name):
 W = tf.Variable("w", tf.random_normal((input_size,
 output_size)))
 b = tf.Variable("b", tf.zeros(output_size))
 z = tf.matmul(input, W) + b
 return z
```
Name Scoping for cleaner code

- Networks often re-use similar structures, gets tedious to write each of them

```python
input = ...
h0 = make_layer(input, 10, 20, "h0")
h1 = make_layer(h0, 20, 20, "h1")
...
tf.get_variable("h0/w")
tf.get_variable("h1/b")
```
Name Scoping Makes for Clean Graph Visualizations
Checkpointing + Saving Models

# Create a saver.
saver = tf.train.Saver(...variables...)

# Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
    sess.run(..training_op..)
    if step % 1000 == 0:
        # Append the step number to the checkpoint name:
        saver.save(sess, 'my-model', global_step=step)
Loading Models

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
  # Restore variables from disk.
  saver.restore(sess, "/tmp/model.ckpt")
  print("Model restored.")
  # Do some work with the model
TensorFlow as core of other Frameworks

- Keras, TFLearn, TF-slim, others all based on TensorFlow
- Research often means tinkering with inner workings - worthwhile to understand the core of any framework you are using
TensorFlow Tutorial:

- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, come down to the front

- Hint for Lab 2: Fix map(lambda...) to list(map(lambda...
TensorFlow Tutorial:

- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, hop on the HelpQ:
  - HelpQ is here: http://deepqueue.herokuapp.com/
  - Click “Log in with GitHub”
  - (or just raise your hand)